A correction on the determination of the weight enumerator polynomial of some irreducible cyclic codes

被引:0
|
作者
Gerardo Vega
机构
[1] Universidad Nacional Autónoma de México,Dirección General de Cómputo y de Tecnologías de Información y Comunicación
来源
关键词
Weight distribution; Weight enumerator polynomial; Irreducible cyclic codes; 94B15; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
A classification that shows explicitly all possible weight enumerator polynomials for every irreducible cyclic code of length n over a finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}, in the particular case where each prime divisor of n is also a divisor of q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q-1$$\end{document}, was recently given in Brochero Martínez and Giraldo Vergara (Des Codes Cryptogr 78:703–712, 2016). However, as we will see next, such classification is incomplete. Thus, the purpose of this work is to use an already known identity among the weight enumerator polynomials, in order to complete such classification. As we will see later, by means of this identity, we not only complete, in an easier way, this classification, but we also find out the nature of the weight distributions of the class of irreducible cyclic codes studied in Brochero Martínez and Giraldo Vergara (2016).
引用
收藏
页码:835 / 840
页数:5
相关论文
共 50 条
  • [31] All two-weight irreducible cyclic codes?
    Schmidt, B
    White, C
    FINITE FIELDS AND THEIR APPLICATIONS, 2002, 8 (01) : 1 - 17
  • [32] THE WEIGHT DISTRIBUTIONS OF SOME IRREDUCIBLE CYCLIC CODES OF LENGTH pn AND 2pn
    Kumar, Pankaj
    Sangwan, Monika
    Arora, Suresh Kumar
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2015, 9 (03) : 277 - 289
  • [33] A Family of Two-Weight Irreducible Cyclic Codes
    Rao, Asha
    Pinnawala, Nimalsiri
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (06) : 2568 - 2570
  • [34] Are 2-weight projective cyclic codes irreducible?
    Wolfmann, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (02) : 733 - 737
  • [35] Two-Weight Codes Punctured from Irreducible Cyclic Codes
    Ding, Cunsheng
    Luo, Jinquan
    Niederreiter, Harald
    CODING AND CRYPTOLOGY, 2008, 4 : 119 - +
  • [36] COMPLETE WEIGHT ENUMERATOR OF TORSION CODES
    Meng, Xiangrui
    Gao, Jian
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (03) : 571 - 596
  • [37] Cycle index, weight enumerator, and Tutte polynomial
    Cameron, Peter J.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2002, 9
  • [38] On Irreducible Polynomial Remainder Codes
    Yu, Jiun-Hung
    Loeliger, Hans-Andrea
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011, : 1190 - 1194
  • [39] CYCLIC CODES FROM IRREDUCIBLE POLYNOMIALS FOR CORRECTION OF MULTIPLE ERROS
    ZETTERBERG, LH
    IRE TRANSACTIONS ON INFORMATION THEORY, 1962, 8 (01): : 13 - &
  • [40] Projective two-weight irreducible cyclic and constacyclic codes
    Wolfmann, J.
    FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (02) : 351 - 360