Let R be a semiprime ring with characteristic p ≥ 0 and RF be its left Martindale quotient
ring. If \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\phi {\left( {X^{{\Delta _{j} }}_{i} } \right)}
$$\end{document} is a reduced generalized differential identity for an essential ideal of R, then ϕ(Zije(Δj))
is a generalized polynomial identity for RF, where e(Δj) are idempotents in the extended centroid of
R determined by Δj. Let R be a prime ring and Q be its symmetric Martindale quotient ring. If
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\phi {\left( {X^{{\Delta _{j} }}_{i} } \right)}
$$\end{document} is a reduced generalized differential identity for a noncommutative Lie ideal of R, then ϕ(Zij)
is a generalized polynomial identity for [R,R]. Moreover, if \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\phi {\left( {X^{{\Delta _{j} }}_{i} } \right)}
$$\end{document} is a reduced generalized differential
identity, with coefficients in Q, for a large right ideal of R, then ϕ(Zij is a generalized polynomial
identity for Q.