Generalized Differential Identities of (Semi–)Prime Rings

被引:0
|
作者
Feng Wei
机构
[1] Beijing Institute of Technology,Department of Applied Mathematics
来源
Acta Mathematica Sinica | 2005年 / 21卷
关键词
Generalized differential identity; Generalized derivation; (Semi–)Prime ring; 16R50; 16W25; 16N60;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a semiprime ring with characteristic p ≥ 0 and RF be its left Martindale quotient ring. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi {\left( {X^{{\Delta _{j} }}_{i} } \right)} $$\end{document} is a reduced generalized differential identity for an essential ideal of R, then ϕ(Zije(Δj)) is a generalized polynomial identity for RF, where e(Δj) are idempotents in the extended centroid of R determined by Δj. Let R be a prime ring and Q be its symmetric Martindale quotient ring. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi {\left( {X^{{\Delta _{j} }}_{i} } \right)} $$\end{document} is a reduced generalized differential identity for a noncommutative Lie ideal of R, then ϕ(Zij) is a generalized polynomial identity for [R,R]. Moreover, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi {\left( {X^{{\Delta _{j} }}_{i} } \right)} $$\end{document} is a reduced generalized differential identity, with coefficients in Q, for a large right ideal of R, then ϕ(Zij is a generalized polynomial identity for Q.
引用
收藏
页码:823 / 832
页数:9
相关论文
共 50 条
  • [41] Differential polynomial rings which are generalized Asano prime rings
    Helmi, M. R.
    Marubayashi, H.
    Ueda, A.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2013, 44 (05): : 673 - 681
  • [42] Differential polynomial rings which are generalized Asano prime rings
    M. R. Helmi
    H. Marubayashi
    A. Ueda
    Indian Journal of Pure and Applied Mathematics, 2013, 44 : 673 - 681
  • [43] The ranges of additive maps in generalized functional identities on prime rings
    Yu, W
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (06) : 2897 - 2913
  • [44] Some identities involving generalized (α, β)-derivations in prime and semiprime rings
    Bera, Manami
    Dhara, Basudeb
    Kar, Sukhendu
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (04)
  • [45] Some algebraic identities on prime near rings with generalized derivations
    Miyan, Phool
    Demie, Seleshi
    Markos, Adnew
    Hailu, Leta
    Italian Journal of Pure and Applied Mathematics, 2024, (51): : 386 - 397
  • [46] Identities with b-generalized derivations and generalized skew derivations on prime rings
    Singh, Lovepreet
    De Filippis, Vincenzo
    Tiwari, S. K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2025, 18 (03)
  • [47] SEMI-PRIME GENERALIZED RIGHT ALTERNATIVE RINGS
    HENTZEL, IR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (04): : A486 - A486
  • [48] On Semi(prime) Rings and Algebras with Automorphisms and Generalized Derivations
    Shakir Ali
    Basudeb Dhara
    Brahim Fahid
    Mohd Arif Raza
    Bulletin of the Iranian Mathematical Society, 2019, 45 : 1805 - 1819
  • [49] On Semi(prime) Rings and Algebras with Automorphisms and Generalized Derivations
    Ali, Shakir
    Dhara, Basudeb
    Fahid, Brahim
    Raza, Mohd Arif
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (06) : 1805 - 1819
  • [50] SEMI-PRIME GENERALIZED RIGHT ALTERNATIVE RINGS
    HENTZEL, IR
    CATTANEO, GMP
    JOURNAL OF ALGEBRA, 1976, 43 (01) : 14 - 27