A parallel fast boundary element method using cyclic graph decompositions

被引:0
|
作者
Dalibor Lukáš
Petr Kovář
Tereza Kovářová
Michal Merta
机构
[1] VŠB–Technical University of Ostrava,
来源
Numerical Algorithms | 2015年 / 70卷
关键词
Boundary element method; Parallel computing; Graph decomposition;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a method of a parallel distribution of densely populated matrices arising in boundary element discretizations of partial differential equations. In our method the underlying boundary element mesh consisting of n elements is decomposed into N submeshes. The related N×N submatrices are assigned to N concurrent processes to be assembled. Additionally we require each process to hold exactly one diagonal submatrix, since its assembling is typically most time consuming when applying fast boundary elements. We obtain a class of such optimal parallel distributions of the submeshes and corresponding submatrices by cyclic decompositions of undirected complete graphs. It results in a method the theoretical complexity of which is O((n/N)log(n/N))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O((n/\sqrt {N})\log (n/\sqrt {N}))$\end{document} in terms of time for the setup, assembling, matrix action, as well as memory consumption per process. Nevertheless, numerical experiments up to n=2744832 and N=273 on a real-world geometry document that the method exhibits superior parallel scalability O((n/N)logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O((n/N)\,\log n)$\end{document} of the overall time, while the memory consumption scales accordingly to the theoretical estimate.
引用
收藏
页码:807 / 824
页数:17
相关论文
共 50 条
  • [41] A parallel multipolar Boundary Element Method for internal Stokes Flows
    Gómez, JE
    Power, H
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1999, 70 (04) : 667 - 697
  • [42] A fast multipole boundary element method for a modified hypersingular boundary integral equation
    Of, G
    Steinbach, O
    ANALYSIS AND SIMULATION OF MULTIFIELD PROBLEMS, 2003, 12 : 163 - 169
  • [43] Parallel computational electromagnetics on the CRAY T3D using boundary element method
    Vezolle, P
    HIGH-PERFORMANCE COMPUTING AND NETWORKING, 1995, 919 : 658 - 663
  • [44] Fast Parallel Hypertree Decompositions in Logarithmic Recursion Depth
    Gottlob, Georg
    Lanzinger, Matthias
    Okulmus, Cem
    Pichler, Reinhard
    PROCEEDINGS OF THE 41ST ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS (PODS '22), 2022, : 325 - 336
  • [45] Fast Parallel Hypertree Decompositions in Logarithmic Recursion Depth
    Gottlob, Georg
    Lanzinger, Matthias
    Okulmus, Cem
    Pichler, Reinhard
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 2024, 49 (01):
  • [46] A new simple multidomain fast multipole boundary element method
    S. Huang
    Y. J. Liu
    Computational Mechanics, 2016, 58 : 533 - 548
  • [47] Fast multipole acceleration of the MEG/EEG boundary element method
    Kybic, J
    Clerc, M
    Faugeras, O
    Keriven, R
    Papadopoulo, T
    PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (19): : 4695 - 4710
  • [48] The fast multipole boundary element method for potential problems: A tutorial
    Liu, Y. J.
    Nishimura, N.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2006, 30 (05) : 371 - 381
  • [49] Fast adaptive multigrid boundary element method for biomolecular electrostatics
    Vorobjev, YN
    Hermans, J
    BIOPHYSICAL JOURNAL, 1997, 72 (02) : MP459 - MP459
  • [50] A New Adaptive Algorithm for the Fast Multipole Boundary Element Method
    Bapat, M. S.
    Liu, Y. J.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 58 (02): : 161 - 183