Complementary Lidstone Interpolation and Boundary Value Problems

被引:0
|
作者
Ravi P. Agarwal
Sandra Pinelas
Patricia J. Y. Wong
机构
[1] Florida Institute of Technology,Department of Mathematical Sciences
[2] Azores University,Department of Mathematics
[3] Nanyang Technological University,School of ELectrical & Electronic Engineering
[4] King Fahd University of Petroleum and Minerals,Mathematics and Statistics Department
关键词
Iterative Method; Boundary Data; Iterative Scheme; Quadrature Formula; Lipschitz Condition;
D O I
暂无
中图分类号
学科分类号
摘要
We shall introduce and construct explicitly the complementary Lidstone interpolating polynomial [inline-graphic not available: see fulltext] of degree [inline-graphic not available: see fulltext], which involves interpolating data at the odd-order derivatives. For [inline-graphic not available: see fulltext] we will provide explicit representation of the error function, best possible error inequalities, best possible criterion for the convergence of complementary Lidstone series, and a quadrature formula with best possible error bound. Then, these results will be used to establish existence and uniqueness criteria, and the convergence of Picard's, approximate Picard's, quasilinearization, and approximate quasilinearization iterative methods for the complementary Lidstone boundary value problems which consist of a [inline-graphic not available: see fulltext]th order differential equation and the complementary Lidstone boundary conditions.
引用
收藏
相关论文
共 50 条
  • [21] Piecewise complementary Lidstone interpolation and error inequalities
    Agarwal, Ravi P.
    Wong, Patricia J. Y.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (08) : 2543 - 2561
  • [22] Complementary Lidstone interpolation on scattered data sets
    F. A. Costabile
    F. Dell’Accio
    F. Di Tommaso
    Numerical Algorithms, 2013, 64 : 157 - 180
  • [23] Twin positive symmetric solutions for Lidstone boundary value problems
    Guo, YP
    Ge, WG
    TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (02): : 271 - 283
  • [24] Results and estimates on multiple solutions of lidstone boundary value problems
    Wong, PJY
    Agarwal, RP
    ACTA MATHEMATICA HUNGARICA, 2000, 86 (1-2) : 137 - 168
  • [25] Results and Estimates on Multiple Solutions of Lidstone Boundary Value Problems
    Patricia J. Y. Wong
    R. P. Agarwal
    Acta Mathematica Hungarica, 2000, 86 : 137 - 168
  • [26] Double symmetric solutions for discrete lidstone boundary value problems
    Henderson, J
    Wong, PJY
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2001, 7 (06) : 811 - 828
  • [27] On Coupled Systems of Lidstone-Type Boundary Value Problems
    de Sousa, Robert
    Minhos, Feliz
    Fialho, Joao
    MATHEMATICAL MODELLING AND ANALYSIS, 2021, 26 (03) : 358 - 371
  • [28] On 2nth-order Lidstone boundary value problems
    Wang, YM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 312 (02) : 383 - 400
  • [29] Existence of nodal solutions of nonlinear Lidstone boundary value problems
    Yan, Meng
    Zhang, Tingting
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (09): : 5542 - 5556
  • [30] Comparison of eigenvalues for lidstone boundary value problems on a measure chain
    Henderson, J
    Prasad, KR
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 38 (11-12) : 55 - 62