In the framework of metric-affine gravity, we consider the role of the boundary term in Symmetric Teleparallel Gravity assuming f(Q, B) models where f is a smooth function of the non-metricity scalar Q and the related boundary term B. Starting from a variational approach, we derive the field equations and compare them with respect to those of f(Q) gravity in the limit of B→0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B\rightarrow 0$$\end{document}. It is possible to show that f(Q,B)=f(Q-B)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f(Q,B)=f(Q-B)$$\end{document} models are dynamically equivalent to f(R) gravity as in the case of teleparallel f(B~-T)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f(\tilde{B}-T)$$\end{document} gravity (where B≠B~\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B\ne \tilde{B}$$\end{document}). Furthermore, conservation laws are derived. In this perspective, considering boundary terms in f(Q) gravity represents the last ingredient towards the Extended Geometric Trinity of Gravity, where f(R), f(T,B~)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f(T,\tilde{B})$$\end{document}, and f(Q, B) can be dealt under the same standard. In this perspective, we discuss also the Gibbons–Hawking–York boundary term of General Relativity comparing it with B in f(Q, B) gravity.