SARS-CoV2 billion-compound docking

被引:0
|
作者
David M. Rogers
Rupesh Agarwal
Josh V. Vermaas
Micholas Dean Smith
Rajitha T. Rajeshwar
Connor Cooper
Ada Sedova
Swen Boehm
Matthew Baker
Jens Glaser
Jeremy C. Smith
机构
[1] Oak Ridge National Laboratory,Computing and Computational Sciences Directorate
[2] Oak Ridge National Laboratory,UT/ORNL Center for Molecular Biophysics
[3] The University of Tennessee,Department of Biochemistry and Cellular and Molecular Biology
[4] Knoxville,MSU
[5] Michigan State University,DOE Plant Research Laboratory
[6] Oak Ridge National Laboratory,Biological Sciences Division
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This dataset contains ligand conformations and docking scores for 1.4 billion molecules docked against 6 structural targets from SARS-CoV2, representing 5 unique proteins: MPro, NSP15, PLPro, RDRP, and the Spike protein. Docking was carried out using the AutoDock-GPU platform on the Summit supercomputer and Google Cloud. The docking procedure employed the Solis Wets search method to generate 20 independent ligand binding poses per compound. Each compound geometry was scored using the AutoDock free energy estimate, and rescored using RFScore v3 and DUD-E machine-learned rescoring models. Input protein structures are included, suitable for use by AutoDock-GPU and other docking programs. As the result of an exceptionally large docking campaign, this dataset represents a valuable resource for discovering trends across small molecule and protein binding sites, training AI models, and comparing to inhibitor compounds targeting SARS-CoV-2. The work also gives an example of how to organize and process data from ultra-large docking screens.
引用
收藏
相关论文
共 50 条
  • [21] Tocilizumab in patients infected by SARS-CoV2
    Sancho, Milagros
    Muniz, Javier
    Cardinal-Fernandez, Pablo
    MEDICINA CLINICA, 2021, 156 (08): : 402 - 406
  • [22] Reply to "Ibuprofen and thromboembolism in SARS-COV2"
    Cui, Songping
    Chen, Shuo
    Ke, Lihui
    JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2020, 18 (09) : 2427 - 2428
  • [23] SARS-CoV2 and pregnancy: An invisible enemy?
    Verma, Sonam
    Carter, Ebony B.
    Mysorekar, Indira U.
    AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, 2020, 84 (05)
  • [24] SARS-COV2 COAGULOPATHY: AN INTRICATED PUZZLE
    Napolitano, M.
    Siragusa, S.
    HAEMATOLOGICA, 2022, 107 : 8 - 9
  • [25] Neurological Involvements of SARS-CoV2 Infection
    Amin Gasmi
    Torsak Tippairote
    Pavan Kumar Mujawdiya
    Asma Gasmi Benahmed
    Alain Menzel
    Maryam Dadar
    Geir Bjørklund
    Molecular Neurobiology, 2021, 58 : 944 - 949
  • [26] The pathogenesis and alternative treatment of SARS-CoV2
    Choi, Jun-Yong
    Joo, Myungsoo
    INTEGRATIVE MEDICINE RESEARCH, 2020, 9 (03)
  • [27] Paediatric SARS-COV2 infections in Switzerland
    Uka, A.
    Zimmermann, P.
    Ritz, N.
    SWISS MEDICAL WEEKLY, 2021, 151 : 13S - 13S
  • [28] SARS-CoV2 vaccines: Slow is fast
    Green, Douglas R.
    SCIENCE ADVANCES, 2020, 6 (28)
  • [29] Susceptibility of SARS-CoV2 infection in children
    Cotugno, Nicola
    Amodio, Donato
    Buonsenso, Danilo
    Palma, Paolo
    EUROPEAN JOURNAL OF PEDIATRICS, 2023, 182 (11) : 4851 - 4857
  • [30] Artemisia annua inhibits SARS-Cov2
    不详
    DEUTSCHE ZEITSCHRIFT FUR AKUPUNKTUR, 2021, 64 (03): : 233 - 233