Stability of n-dimensional extremal surfaces of revolution

被引:0
|
作者
Poluboyarova N.M. [1 ]
机构
[1] Volgograd State University, Volgograd 400062
关键词
area-type functional; extremal surface; functional variation; stable (unstable) extremal surface;
D O I
10.3103/S1066369X11020113
中图分类号
学科分类号
摘要
In this paper we consider extremal surfaces of revolution of area-type functionals. For the latter we calculate the first and second variations. We prove stability and instability criteria for n-dimensional surfaces of revolution based on their definition and in terms of special integrals. © 2011 Allerton Press, Inc.
引用
收藏
页码:93 / 95
页数:2
相关论文
共 50 条
  • [11] On one submission of convex surfaces in n-dimensional spaces
    Ligun, A.A.
    Shumejko, A.A.
    Timchenko, S.V.
    Doklady Akademii Nauk, 2001, 377 (01) : 17 - 20
  • [12] On the Ulam stability of an n-dimensional quadratic functional equation
    Shen, Yonghong
    Chen, Wei
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (01): : 332 - 341
  • [13] Local stability conditions for a n-dimensional periodic mapping
    Luis, Rafael
    Mendonca, Sandra
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 218 : 15 - 30
  • [14] STABILITY-CRITERION FOR N-DIMENSIONAL DIGITAL FILTERS
    JUSTICE, JH
    SHANKS, JL
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1973, AC18 (03) : 284 - 286
  • [15] Solution and Stability of n-Dimensional Quadratic Functional Equation
    Arunkumar, M.
    Murthy, S.
    Ganapathy, G.
    MATHEMATICAL MODELLING AND SCIENTIFIC COMPUTATION, 2012, 283 : 384 - +
  • [16] Stability of perturbed n-dimensional Volterra differential equations
    Chang, Xiao
    Wang, Ruiqi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) : 1672 - 1675
  • [17] On Generalized Stability of an n-Dimensional Quadratic Functional Equation
    Eungrasamee, T.
    Udomkavanich, P.
    Nakmahachalasint, P.
    THAI JOURNAL OF MATHEMATICS, 2010, 8 (04): : 43 - 50
  • [18] On the stability of a mixed n-dimensional quadratic functional equation
    Chu, Hahng-Yun
    Kang, Dong Seung
    Rassias, Themistocles M.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2008, 15 (01) : 9 - 24
  • [19] N-DIMENSIONAL STABILITY MARGINS COMPUTATION AND A VARIABLE TRANSFORMATION
    WALACH, E
    ZEHEB, E
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1982, 30 (06): : 887 - 893
  • [20] Asymptotic stability of an N-dimensional impulsive competitive system
    Ahmad, Shair
    Stamova, Ivanka M.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2007, 8 (02) : 654 - 663