A genetically optimized level set approach to segmentation of thyroid ultrasound images

被引:0
|
作者
Dimitris K. Iakovidis
Michalis A. Savelonas
Stavros A. Karkanis
Dimitris E. Maroulis
机构
[1] University of Athens,Dept. of Informatics and Telecommunications
[2] Technological Educational Institute of Lamia,Dept. of Informatics and Computer Technology
来源
Applied Intelligence | 2007年 / 27卷
关键词
Level sets; Active contour models; Genetic algorithms; Segmentation; Thyroid; Ultrasound;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a novel framework for thyroid ultrasound image segmentation that aims to accurately delineate thyroid nodules. This framework, named GA-VBAC incorporates a level set approach named Variable Background Active Contour model (VBAC) that utilizes variable background regions, to reduce the effects of the intensity inhomogeneity in the thyroid ultrasound images. Moreover, a parameter tuning mechanism based on Genetic Algorithms (GA) has been considered to search for the optimal VBAC parameters automatically, without requiring technical skills. Experiments were conducted over a range of ultrasound images displaying thyroid nodules. The results show that the proposed GA-VBAC framework provides an efficient, effective and highly objective system for the delineation of thyroid nodules.
引用
收藏
页码:193 / 203
页数:10
相关论文
共 50 条
  • [31] Optimized multi-level elongated quinary patterns for the assessment of thyroid nodules in ultrasound images
    Raghavendra, U.
    Gudigar, Anjan
    Maithri, M.
    Gertych, Arkadiusz
    Meiburger, Kristen M.
    Yeong, Chai Hong
    Madla, Chakri
    Kongmebhol, Pailin
    Molinari, Filippo
    Ng, Kwan Hoong
    Acharya, U. Rajendra
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 95 : 55 - 62
  • [32] Segmentation with depth: A level set approach
    Zhu, Wei
    Chan, Tony
    Esedoglu, Selim
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (05): : 1957 - 1973
  • [33] Intuitionistic based segmentation of thyroid nodules in ultrasound images
    Koundal, Deepika
    Sharma, Bhisham
    Guo, Yanhui
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 121
  • [34] An Interactive Segmentation Algorithm for Thyroid Nodules in Ultrasound Images
    Alrubaidi, Waleed M. H.
    Peng, Bo
    Yang, Yan
    Chen, Qin
    INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2016, PT III, 2016, 9773 : 107 - 115
  • [35] Objective assessment of segmentation models for thyroid ultrasound images
    Niranjan Yadav
    Rajeshwar Dass
    Jitendra Virmani
    Journal of Ultrasound, 2023, 26 : 673 - 685
  • [36] A NOVEL MODEL OF THYROID NODULE SEGMENTATION FOR ULTRASOUND IMAGES
    LI, Chengfan
    DU, Ruiqi
    Luo, Quanyong
    Wang, Ren
    Ding, Xuehai
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2023, 49 (02): : 489 - 496
  • [37] Objective assessment of segmentation models for thyroid ultrasound images
    Yadav, Niranjan
    Dass, Rajeshwar
    Virmani, Jitendra
    JOURNAL OF ULTRASOUND, 2023, 26 (03) : 673 - 685
  • [38] Intelligent Segmentation of Thyroid Nodules Based on Ultrasound Images
    Cao Y.
    Zheng J.
    Yu H.
    Wang F.
    Zhang J.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2022, 55 (07): : 674 - 681
  • [39] Automatic segmentation of right ventricular ultrasound images using sparse matrix transform and a level set
    Qin, Xulei
    Cong, Zhibin
    Fei, Baowei
    PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (21): : 7609 - 7624
  • [40] Automatic Segmentation of Right Ventricle on Ultrasound Images Using Sparse Matrix Transform and Level Set
    Qin, Xulei
    Cong, Zhibin
    Halig, Luma V.
    Fei, Baowei
    MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669