A genetically optimized level set approach to segmentation of thyroid ultrasound images

被引:0
|
作者
Dimitris K. Iakovidis
Michalis A. Savelonas
Stavros A. Karkanis
Dimitris E. Maroulis
机构
[1] University of Athens,Dept. of Informatics and Telecommunications
[2] Technological Educational Institute of Lamia,Dept. of Informatics and Computer Technology
来源
Applied Intelligence | 2007年 / 27卷
关键词
Level sets; Active contour models; Genetic algorithms; Segmentation; Thyroid; Ultrasound;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a novel framework for thyroid ultrasound image segmentation that aims to accurately delineate thyroid nodules. This framework, named GA-VBAC incorporates a level set approach named Variable Background Active Contour model (VBAC) that utilizes variable background regions, to reduce the effects of the intensity inhomogeneity in the thyroid ultrasound images. Moreover, a parameter tuning mechanism based on Genetic Algorithms (GA) has been considered to search for the optimal VBAC parameters automatically, without requiring technical skills. Experiments were conducted over a range of ultrasound images displaying thyroid nodules. The results show that the proposed GA-VBAC framework provides an efficient, effective and highly objective system for the delineation of thyroid nodules.
引用
收藏
页码:193 / 203
页数:10
相关论文
共 50 条
  • [1] A genetically optimized level set approach to segmentation of thyroid ultrasound images
    Iakovidis, Dimitris K.
    Savelonas, Michalis A.
    Karkanis, Stavros A.
    Maroulis, Dimitris E.
    APPLIED INTELLIGENCE, 2007, 27 (03) : 193 - 203
  • [2] Segmentation of medical ultrasound images: novel level set approach
    Zhou, Zhuhuang
    Wang, Tianfu
    Lin, Jiangli
    Li, Deyu
    Zheng, Changqiong
    MIPPR 2007: MEDICAL IMAGING, PARALLEL PROCESSING OF IMAGES, AND OPTIMIZATION TECHNIQUES, 2007, 6789
  • [3] A Multi-Level Set Approach for Bone Segmentation in Lumbar Ultrasound Images
    Unnannaheswari, V
    Venkatasai, P. M.
    Poonguzhali, S.
    IETE JOURNAL OF RESEARCH, 2022, 68 (02) : 977 - 989
  • [4] Tunneling descent level set segmentation of ultrasound images
    Tao, Z
    Tagare, HD
    INFORMATION PROCESSING IN MEDICAL IMAGING, PROCEEDINGS, 2005, 3565 : 750 - 761
  • [5] Phase Based Level Set Segmentation of Ultrasound Images
    Belaid, A.
    Boukerroui, D.
    Maingourd, Y.
    Lerallut, J-F.
    2009 9TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS IN BIOMEDICINE, 2009, : 341 - +
  • [6] A Nonlinear Adaptive Level Set for Intravascular Ultrasound Images Segmentation
    Eslamizadeh, Mehdi
    Dabanloo, Nader Jafarnia
    Attarodi, Gholamreza
    Sedehi, Javid Farhadi
    Mohandespoor, Mehrdad
    2018 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2018, 45
  • [7] Phase-Based Level Set Segmentation of Ultrasound Images
    Belaid, Ahror
    Boukerroui, Djamal
    Maingourd, Y.
    Lerallut, Jean-Francois
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2011, 15 (01): : 138 - 147
  • [8] LEVEL SET BASED AUTOMATIC SEGMENTATION OF ULTRASOUND ECHOCARDIOGRAPHIC IMAGES
    Skalski, Andrzej
    Zielinski, Tomasz
    Turcza, Pawel
    SPA 2009: SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS CONFERENCE PROCEEDINGS, 2009, : 52 - +
  • [9] A multitask approach for automated detection and segmentation of thyroid nodules in ultrasound images
    Radhachandran, Ashwath
    Kinzel, Adam
    Chen, Joseph
    Sant, Vivek
    Patel, Maitraya
    Masamed, Rinat
    Arnold, Corey W.
    Speier, William
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 170
  • [10] A Hybrid Multilayer Filtering Approach for Thyroid Nodule Segmentation on Ultrasound Images
    Ardakani, Ali Abbasian
    Bitarafan-Rajabi, Ahmad
    Mohammadzadeh, Ali
    Mohammadi, Afshin
    Riazi, Reza
    Abolghasemi, Jamileh
    Jafari, Amir Homayoun
    Shiran, Mohammad Bagher
    JOURNAL OF ULTRASOUND IN MEDICINE, 2019, 38 (03) : 629 - 640