Functional calculus on non-homogeneous operators on nilpotent groups

被引:0
|
作者
Mattia Calzi
Fulvio Ricci
机构
[1] Scuola Normale Superiore,
关键词
Nilpotent Lie groups; Hypoelliptic differential operators; Multiplier theorem; Heat kernel; Riesz potentials; 43A22; 22E30;
D O I
暂无
中图分类号
学科分类号
摘要
We study the functional calculus associated with a hypoelliptic left-invariant differential operator L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document} on a connected and simply connected nilpotent Lie group G with the aid of the corresponding Rockland operator L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}_0$$\end{document} on the ‘local’ contraction G0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_0$$\end{document} of G, as well as of the corresponding Rockland operator L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}_\infty $$\end{document} on the ‘global’ contraction G∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\infty $$\end{document} of G. We provide asymptotic estimates of the Riesz potentials associated with L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document} at 0 and at ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document}, as well as of the kernels associated with functions of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document} satisfying Mihlin conditions of every order. We also prove some Mihlin–Hörmander multiplier theorems for L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document} which generalize analogous results to the non-homogeneous case. Finally, we extend the asymptotic study of the density of the ‘Plancherel measure’ associated with L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document} from the case of a quasi-homogeneous sub-Laplacian to the case of a quasi-homogeneous sum of even powers.
引用
收藏
页码:1517 / 1571
页数:54
相关论文
共 50 条
  • [41] HYPOELLIPTIC DIFFERENTIAL OPERATORS AND NILPOTENT GROUPS
    ROTHSCHILD, LP
    STEIN, EM
    [J]. ACTA MATHEMATICA, 1976, 137 (3-4) : 247 - 320
  • [42] HYPOELLIPTICITY FOR OPERATORS ON NILPOTENT LIE GROUPS
    HELFFER, B
    NOURRIGAT, J
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (06): : 395 - 398
  • [43] BIINVARIANT OPERATORS ON NILPOTENT LIE GROUPS
    WIGNER, D
    [J]. INVENTIONES MATHEMATICAE, 1977, 41 (03) : 259 - 264
  • [44] Analysis of settlements of vertically loaded pile groups in non-homogeneous soil
    Jiang Jie
    Huang Mao-song
    Gu Qian-yan
    [J]. ROCK AND SOIL MECHANICS, 2008, 29 (08) : 2092 - 2096
  • [45] OPERATIONAL CALCULUS FOR GROUPS OF OPERATORS
    KANTOROVITZ, S
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 26 (04) : 603 - +
  • [46] Data envelopment analysis procedure with two non-homogeneous DMU groups
    Chen Ye
    Wu Liangpeng
    Lu Bo
    [J]. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2018, 29 (04) : 780 - 788
  • [47] Data envelopment analysis procedure with two non-homogeneous DMU groups
    CHEN Ye
    WU Liangpeng
    LU Bo
    [J]. Journal of Systems Engineering and Electronics, 2018, 29 (04) : 780 - 788
  • [48] Multilinear strongly singular integral operators on non-homogeneous metric measure spaces
    Hailian Wang
    Rulong Xie
    [J]. Journal of Inequalities and Applications, 2022
  • [49] Analysis of settlements of vertically loaded pile groups in non-homogeneous soil
    Key Laboratory of Geotechnical and Underground Engineering, Tongji University, Shanghai 200092, China
    不详
    不详
    [J]. Rock Soil Mech, 2008, 8 (2092-2096):
  • [50] Bilinear Calderon-Zygmund operators of type ω(t) on non-homogeneous space
    Zheng, Taotao
    Tao, Xiangxing
    Wu, Xiaomei
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,