A Combinatorial Bijection on k-Noncrossing Partitions

被引:0
|
作者
Zhicong Lin
Dongsu Kim
机构
[1] Shandong University,Research Center for Mathematics and Interdisciplinary Sciences
[2] Korea Advanced Institute of Science and Technology,Department of Mathematical Sciences
来源
Combinatorica | 2022年 / 42卷
关键词
05A18; 05A19;
D O I
暂无
中图分类号
学科分类号
摘要
For any integer k ≥ 2, we prove combinatorially the following Euler (binomial) transformation identity NCn+1(k)(t)=t∑i=0n(ni)NWi(k)(t),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{NC}}_{n + 1}^{(k)}(t) = t\sum\limits_{i = 0}^n {\left({\matrix{n \cr i \cr}} \right)} {\rm{NW}}_i^{(k)}(t),$$\end{document} where NCm(k)(t) (resp. NWm(k)(t)) is the sum of weights, tnumber of blocks, of partitions of {1,…,m} without k-crossings (resp. enhanced k-crossings). The special k = 2 and t = 1 case, asserting the Euler transformation of Motzkin numbers are Catalan numbers, was discovered by Donaghey 1977. The result for k = 3 and t = 1, arising naturally in a recent study of pattern avoidance in ascent sequences and inversion sequences, was proved only analytically.
引用
收藏
页码:559 / 586
页数:27
相关论文
共 50 条
  • [1] A COMBINATORIAL BIJECTION ON k-NONCROSSING PARTITIONS
    Lin, Zhicong
    Kim, Dongsu
    [J]. COMBINATORICA, 2022, 42 (04) : 559 - 586
  • [2] A simple bijection for enhanced, classical, and 2-distant k-noncrossing partitions
    Gil, Juan B.
    Tirrell, Jordan O.
    [J]. DISCRETE MATHEMATICS, 2020, 343 (06)
  • [3] A UNIFORM BIJECTION BETWEEN NONNESTING AND NONCROSSING PARTITIONS
    Armstrong, Drew
    Stump, Christian
    Thomas, Hugh
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (08) : 4121 - 4151
  • [4] Modular, k-noncrossing diagrams
    Reidys, Christian M.
    Wang, Rita R.
    Zhao, Albus Y. Y.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [5] Random k-noncrossing RNA structures
    Chen, William Y. C.
    Han, Hillary S. W.
    Reidys, Christian M.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (52) : 22061 - 22066
  • [6] Enumeration of k-noncrossing trees and forests
    Okoth, Isaac Owino
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2022, 7 (02) : 301 - 311
  • [7] On the decomposition of k-noncrossing RNA structures
    Jin, Emma Y.
    Reidys, Christian M.
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2010, 44 (01) : 53 - 70
  • [9] POSETS AND SPACES OF k-NONCROSSING RNA STRUCTURES*
    Moulton, V. I. N. C. E. N. T.
    Wu, T. A. O. Y. A. N. G.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (03) : 1586 - 1611
  • [10] Efficient Counting and Asymptotics of k-Noncrossing Tangled Diagrams
    Chen, William Y. C.
    Qin, Jing
    Reidys, Christian M.
    Zeilberger, Doron
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):