On the decomposition of k-noncrossing RNA structures

被引:3
|
作者
Jin, Emma Y. [1 ]
Reidys, Christian M. [1 ]
机构
[1] Nankai Univ, Ctr Combinator, Coll Life Sci, LPMC TJKLC, Tianjin 300071, Peoples R China
基金
美国国家科学基金会;
关键词
Singularity analysis; k-Noncrossing diagram; k-Noncrossing RNA structure; Irreducible substructure; Nontrivial return; COMBINATORIAL; DOMAIN;
D O I
10.1016/j.aam.2009.03.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A k-noncrossing RNA structure can be identified with a k-noncrossing diagram over [n], which in turn corresponds to a vacillating tableau having at most (k - 1) rows. In this paper we derive the limit distribution of irreducible substructures via studying their corresponding vacillating tableaux. Our main result proves, that the limit distribution of the numbers of irreducible substructures in k-noncrossing, sigma-canonical RNA structures is determined by the density function of Gamma(In tau(k)/tau(k)-1, 2)-distribution for some tau(k) > 1. (C) 2009 Published by Elsevier Inc.
引用
收藏
页码:53 / 70
页数:18
相关论文
共 50 条
  • [1] Random k-noncrossing RNA structures
    Chen, William Y. C.
    Han, Hillary S. W.
    Reidys, Christian M.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (52) : 22061 - 22066
  • [2] POSETS AND SPACES OF k-NONCROSSING RNA STRUCTURES*
    Moulton, V. I. N. C. E. N. T.
    Wu, T. A. O. Y. A. N. G.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (03) : 1586 - 1611
  • [3] Modeling k-Noncrossing Closed RNA Secondary Structures via Meandric Compression
    Panayotopoulos, Antonios
    Vlamos, Panayiotis
    [J]. GENEDIS 2014: COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2015, 820 : 207 - 216
  • [4] Modular, k-noncrossing diagrams
    Reidys, Christian M.
    Wang, Rita R.
    Zhao, Albus Y. Y.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [5] Enumeration of k-noncrossing trees and forests
    Okoth, Isaac Owino
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2022, 7 (02) : 301 - 311
  • [6] A COMBINATORIAL BIJECTION ON k-NONCROSSING PARTITIONS
    Lin, Zhicong
    Kim, Dongsu
    [J]. COMBINATORICA, 2022, 42 (04) : 559 - 586
  • [7] A Combinatorial Bijection on k-Noncrossing Partitions
    Zhicong Lin
    Dongsu Kim
    [J]. Combinatorica, 2022, 42 : 559 - 586
  • [8] Efficient Counting and Asymptotics of k-Noncrossing Tangled Diagrams
    Chen, William Y. C.
    Qin, Jing
    Reidys, Christian M.
    Zeilberger, Doron
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [9] Refined Enumeration of k-plane Trees and k-noncrossing Trees
    Okoth, Isaac Owino
    Wagner, Stephan
    [J]. ANNALS OF COMBINATORICS, 2024, 28 (01) : 121 - 153
  • [10] k-noncrossing and k-nonnesting graphs and fillings of ferrers diagrams
    Anna de Mier
    [J]. Combinatorica, 2007, 27 : 699 - 720