FAMILIES OF GROUP ACTIONS, GENERIC ISOTRIVIALITY, AND LINEARIZATION

被引:0
|
作者
HANSPETER KRAFT
PETER RUSSELL
机构
[1] Universität Basel,Mathematisches Institut
[2] Department of Mathematics and Statistics McGill University,undefined
来源
Transformation Groups | 2014年 / 19卷
关键词
Automorphism Group; Algebraic Group; Smooth Curve; Polynomial Ring; Reductive Group;
D O I
暂无
中图分类号
学科分类号
摘要
Our base field is the field ℂ of complex numbers. We study families of reductive group actions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb A} $$\end{document}2 parametrized by curves and show that every faithful action of a non-finite reductive group on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb A} $$\end{document}3 is linearizable, i.e., G-isomorphic to a representation of G. The difficulties arise for non-connected groups G.
引用
收藏
页码:779 / 792
页数:13
相关论文
共 50 条