Our base field is the field ℂ of complex numbers. We study families of reductive group actions on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathbb A} $$\end{document}2 parametrized by curves and show that every faithful action of a non-finite reductive group on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathbb A} $$\end{document}3 is linearizable, i.e., G-isomorphic to a representation of G. The difficulties arise for non-connected groups G.
机构:
Inst Tecnol & Estudios Super Monterrey, Div Ingn & Arquitectura, Dept Matemat, Mexico City 14380, DF, MexicoUniv Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
Antonyan, Natella
Antonyan, Sergey A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, MexicoUniv Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
Antonyan, Sergey A.
Rodriguez-Medina, Leonardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, MexicoUniv Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
机构:
Westlake Univ, Inst Theoret Sci, Sch Sci, 18 Shilongshan Rd, Hangzhou, Peoples R China
Inst Nat Sci, Westlake Inst Adv Study, 18 Shilongshan Rd, Hangzhou, Peoples R ChinaWestlake Univ, Inst Theoret Sci, Sch Sci, 18 Shilongshan Rd, Hangzhou, Peoples R China
Wei, Chuanhao
Wu, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utah, Dept Math, 155 S 1400 E, Salt Lake City, UT 84112 USAWestlake Univ, Inst Theoret Sci, Sch Sci, 18 Shilongshan Rd, Hangzhou, Peoples R China