The P systems (or membrane systems) are a class of distributed parallel computing devices of a biochemical type, where membrane division is the frequently investigated way for obtaining an exponential working space in a linear time, and on this basis solving hard problems, typically NP-complete problems, in polynomial (often, linear) time. In this paper, using another way to obtain exponential working space – membrane separation, it was shown that Satisfiability Problem and Hamiltonian Path Problem can be deterministically solved in linear or polynomial time by a uniform family of P systems with separation rules, where separation rules are not changing labels, but polarizations are used. Some related open problems are mentioned.