A Characterization of Minimal Rotational Surfaces in the de Sitter Space

被引:0
|
作者
Rafael López
机构
[1] Universidad de Granada,Departamento de Geometría y Topología
来源
关键词
De Sitter space; spacelike surface; timelike surface; minimal surface; catenary; 53C40; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, it is characterized the generating curves of minimal rotational surfaces in the de Sitter space S13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}_1^3$$\end{document} as solutions of a variational problem. More exactly, it is proved that these curves are the critical points of a potential energy functional involving the distance to a given plane among all curves of S12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}_1^2$$\end{document} with prescribed endpoints and fixed length. This extends the known Euler’s result that asserts that the catenary is the generating curve of the catenoid.
引用
收藏
相关论文
共 50 条