Temperature effects on the nitric acid oxidation of industrial grade multiwalled carbon nanotubes

被引:0
|
作者
Nádia F. Andrade
Diego Stéfani T. Martinez
Amauri J. Paula
José V. Silveira
Oswaldo L. Alves
Antonio G. Souza Filho
机构
[1] Universidade Federal do Ceará,Departamento de Física
[2] Universidade Estadual de Campinas (UNICAMP),Laboratório de Química do Estado Sólido (LQES), Instituto de Química
来源
关键词
Carbon nanotube; Functionalization; Physico-chemical properties; Oxidation debris;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we report an oxidative treatment of multiwalled carbon nanotubes (MWCNTs) by using nitric acid at different temperatures (25–175 °C). The analyzed materials have diameters varying from 10 to 40 nm and majority lengths between 3 and 6 μm. The characterization results obtained by different techniques (e.g., field emission scanning electron microscopy, thermogravimetric analysis, energy-filtered transmission electron microscopy, Braunauer, Emmet and Teller method, ζ-potential and confocal Raman spectroscopy) allowed us to access the effects of temperature treatment on the relevant physico-chemical properties of the MWCNTs samples studied in view of an integrated perspective to use these samples in a bio-toxicological context. Analytical microbalance measurements were used to access the purity of samples (metallic residue) after thermogravimetric analysis. Confocal Raman spectroscopy measurements were used to evaluate the density of structural defects created on the surface of the tubes due to the oxidation process by using 2D Raman image. Finally, we have demonstrated that temperature is an important parameter in the generation of oxidation debris (a byproduct which has not been properly taken into account in the literature) in the industrial grade MWCNTs studied after nitric acid purification and functionalization.
引用
收藏
相关论文
共 50 条
  • [21] Oxidation Behavior of Multiwalled Carbon Nanotubes Fluidized with Ozone
    Vennerberg, Danny C.
    Quirino, Rafael L.
    Jang, Youngchan
    Kessler, Michael R.
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (03) : 1835 - 1842
  • [22] Effective Chemical Oxidation on the Structure of Multiwalled Carbon Nanotubes
    Qu Zehua
    Wang Guojian
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (01) : 105 - 111
  • [23] Oxidation and reduction of multiwalled carbon nanotubes - preparation and characterization
    Scheibe, Blazej
    Borowiak-Palen, Ewa
    Kalenczuk, Ryszard J.
    MATERIALS CHARACTERIZATION, 2010, 61 (02) : 185 - 191
  • [24] Effect of acid treatment on the multiwalled carbon nanotubes
    Rahmam, S.
    Mohamed, N. M.
    Sufian, S.
    MATERIALS RESEARCH INNOVATIONS, 2014, 18 : 196 - 199
  • [25] Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy
    Osswald, Sebastian
    Havel, Mickael
    Gogotsi, Yury
    JOURNAL OF RAMAN SPECTROSCOPY, 2007, 38 (06) : 728 - 736
  • [26] CATALYTIC WET AIR OXIDATION OF INDUSTRIAL EFFLUENTS USING A Pt CATALIST SUPPORTED ON MULTIWALLED CARBON NANOTUBES
    Ovejero, Gabriel
    Sotelo, Jose L.
    Rodriguez, Araceli
    Vallet, Ana
    Garcia, Juan
    AVANCES EN CIENCIAS E INGENIERIA, 2011, 2 (02): : 11 - 24
  • [27] Holey nitrogen -doped multiwalled carbon nanotubes from extended air oxidation at low -temperature
    Luisa Garcia-Betancourt, Maria
    Luis Fajardo-Diaz, Juan
    Galindo, Rosario
    Fuentes-Ramirez, Rosalba
    Lopez-Urias, Florentino
    Munoz-Sandoval, Emilio
    APPLIED SURFACE SCIENCE, 2020, 524 (524)
  • [28] Multiwalled carbon nanotubes are ballistic conductors at room temperature
    C. Berger
    Y. Yi
    Z.L. Wang
    W.A. de Heer
    Applied Physics A, 2002, 74 : 363 - 365
  • [29] Temperature dependence of the field emission of multiwalled carbon nanotubes
    Tan, CM
    Jia, JJ
    Yu, WB
    APPLIED PHYSICS LETTERS, 2005, 86 (26) : 1 - 3
  • [30] Local temperature during the growth of multiwalled carbon nanotubes
    Crespi, VH
    PHYSICAL REVIEW LETTERS, 1999, 82 (14) : 2908 - 2910