Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau

被引:0
|
作者
Jiangqi Wu
Haiyan Wang
Guang Li
Weiwei Ma
Jianghua Wu
Yu Gong
Guorong Xu
机构
[1] Gansu Agricultural University,College of Forestry
[2] Memorial University of Newfoundland,School of Science and the Environment
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Vegetation degradation, due to climate change and human activities, changes the biomass, vegetation species composition, and soil nutrient input sources and thus affects soil nutrient cycling and enzyme activities. However, few studies have focused on the responses of soil nutrients and enzymes to vegetation degradation in high-altitude wet meadows. In this study, we examined the effects of vegetation degradation on soil nutrients (soil organic carbon, SOC; total nitrogen, TN; total phosphorus, TP) and enzyme activities (i.e., urease, catalase, amylase) in an alpine meadow in the eastern margin of the Qinghai-Tibet Plateau. Four different levels of degradation were defined in terms of vegetation density and composition: primary wet meadow (CK), lightly degraded (LD), moderately degraded (MD), and heavily degraded (HD). Soil samples were collected at depth intervals of 0–10, 10–20, 20–40, 40–60, 60–80, and 80–100 cm to determine soil nutrient levels and enzyme activities. The results showed that SOC, TN, catalase and amylase significantly decreased with degradation level, while TP and urease increased with degradation level (P < 0.05). Soil nutrient and enzyme activity significantly decreased with soil depth (P < 0.05), and the soil nutrient and enzyme activity exhibited obvious "surface aggregation". The activities of soil urease and catalase were strongest in spring and weakest in winter. The content of TN in spring, summer, and autumn was significantly higher than observed in winter (P < 0.05). The soil TP content increased in winter. Soil amylase activity was significantly higher in summerm than in spring, autumn, and winter (P < 0.05). TP was the main limiting factor for plant growth in the Gahai wet meadow. Values of SOC and TN were positively and significantly correlated with amylase and catalase (P < 0.05), but negatively correlated with urease (P < 0.05). These results suggest the significant role that vegetation degradation and seasonal freeze–thaw cycle play in regulating enzyme activities and nutrient availability in wet meadow soil.
引用
收藏
相关论文
共 50 条
  • [41] Extreme degradation of alpine wet meadow decelerates soil heat transfer by preserving soil organic matter on the Qinghai–Tibet Plateau
    Gao, Zeyong
    Zhang, Chengming
    Liu, Wengyan
    Niu, Fujun
    Wang, Yibo
    Lin, Zhanju
    Yin, Guoan
    Ding, Zekun
    Shang, Yunhu
    Luo, Jing
    Journal of Hydrology, 2025, 653
  • [42] Changes of Soil Enzyme Activities in Different Restoration Ages of Spruce Forests on the Eastern Qinghai-Tibet Plateau
    ZHANG Yong-mei 1
    2. South China Botany Garden
    Wuhan University Journal of Natural Sciences, 2005, (04) : 701 - 706
  • [43] Response of Vegetation in the Qinghai-Tibet Plateau to Global Warming
    XU Weixin1
    2. Meteorological Institute of Qinghai Province
    3. Graduate University of Chinese Academy of Sciences
    Chinese Geographical Science, 2007, (02) : 151 - 159
  • [44] Changes in Soil Physical and Chemical Properties During the Process of Alpine Meadow Degradation along the Eastern Qinghai-Tibet Plateau
    Xie, H. H.
    Wu, Q. G.
    Hu, J. Y.
    Yu, L. F.
    Bie, P. F.
    Wang, H.
    Deng, D. Z.
    EURASIAN SOIL SCIENCE, 2018, 51 (12) : 1440 - 1446
  • [45] Influence of thawed soil depth on rainfall erosion of frozen bare meadow soil in the Qinghai-Tibet Plateau
    Gao, Xiaofeng
    Shi, Xiaonan
    Lei, Tingwu
    EARTH SURFACE PROCESSES AND LANDFORMS, 2021, 46 (10) : 1953 - 1963
  • [46] Changes in Soil Physical and Chemical Properties During the Process of Alpine Meadow Degradation along the Eastern Qinghai-Tibet Plateau
    H. H. Xie
    Q. G. Wu
    J. Y. Hu
    L. F. Yu
    P. F. Bie
    H. Wang
    D. Z. Deng
    Eurasian Soil Science, 2018, 51 : 1440 - 1446
  • [47] Response of soil nutrients and stoichiometry to grazing management in alpine grassland on the Qinghai-Tibet Plateau
    Liu, Chenli
    Li, Wenlong
    Xu, Jing
    Wei, Wei
    Xue, Pengfei
    Yan, Hepiao
    SOIL & TILLAGE RESEARCH, 2021, 206
  • [48] Nutrients available in the soil regulate the changes of soil microbial community alongside degradation of alpine meadows in the northeast of the Qinghai-Tibet Plateau
    Li, Haiyun
    Qiu, Yizhi
    Yao, Tuo
    Han, Dongrong
    Gao, Yamin
    Zhang, Jiangui
    Ma, Yachun
    Zhang, Huirong
    Yang, Xiaolei
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 792
  • [49] Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau
    Cheng, Guodong
    Zhao, Lin
    Li, Ren
    Wu, Xiaodong
    Sheng, Yu
    Hu, Guojie
    Zou, Defu
    Jin, Huijun
    Li, Xin
    Wu, Qingbai
    CHINESE SCIENCE BULLETIN-CHINESE, 2019, 64 (27): : 2783 - 2795
  • [50] Streamflow change on the Qinghai-Tibet Plateau and its impacts
    Tang, Qiuhong
    Lan, Cuo
    Su, Fengge
    Liu, Xingcai
    Sun, He
    Ding, Jin
    Wang, Lei
    Leng, Guoyong
    Zhang, Yongqiang
    Sang, Yanfang
    Fang, Haiyan
    Zhang, Shifeng
    Han, Dongmei
    Liu, Xiaomang
    He, Li
    Xu, Ximeng
    Tang, Yin
    Chen, Deliang
    CHINESE SCIENCE BULLETIN-CHINESE, 2019, 64 (27): : 2807 - 2821