On the integrable rational Abel differential equations

被引:0
|
作者
Jaume Giné
Jaume Llibre
机构
[1] Universitat de Lleida,Departament de Matemàtica
[2] Universitat Autònoma de Barcelona,Departament de Matemàtiques
[3] Bellaterra,undefined
关键词
Primary 34C35; 34D30; Integrability; Abel differential equation; Riccati equation; First-order linear differential equation;
D O I
暂无
中图分类号
学科分类号
摘要
In Cheb-Terrab and Roche (Comput Phys Commun 130(1–2):204–231, 2000) a classification of the Abel equations known as solvable in the literature was presented. In this paper, we show that all the integrable rational Abel differential equations that appear in Cheb-Terrab and Roche (Comput Phys Commun 130(1–2):204–231, 2000) and consequently in Cheb-Terrab and Roche (Eur J Appl Math 14(2):217–229, 2003) can be reduced to a Riccati differential equation or to a first-order linear differential equation through a change with a rational map. The change is given explicitly for each class. Moreover, we have found a unified way to find the rational map from the knowledge of the explicitly first integral.
引用
收藏
页码:33 / 39
页数:6
相关论文
共 50 条
  • [21] Center conditions at infinity for Abel differential equations
    Briskin, Miriam
    Roytvarf, Nina
    Yomdin, Yosef
    [J]. ANNALS OF MATHEMATICS, 2010, 172 (01) : 437 - 483
  • [22] A Geometric Approach to Integrability of Abel Differential Equations
    Carinena, Jose F.
    de Lucas, Javier
    Ranada, Manuel F.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (07) : 2114 - 2124
  • [23] WORD PROBLEMS AND THE CENTERS OF ABEL DIFFERENTIAL EQUATIONS
    M.A.M.Alwash(University of California
    [J]. Annals of Applied Mathematics, 1995, (04) : 392 - 396
  • [24] Generalized Weierstrass Integrability of the Abel Differential Equations
    Llibre, Jaume
    Valls, Claudia
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (04) : 1749 - 1760
  • [25] A Geometric Approach to Integrability of Abel Differential Equations
    José F. Cariñena
    Javier de Lucas
    Manuel F. Rañada
    [J]. International Journal of Theoretical Physics, 2011, 50 : 2114 - 2124
  • [26] Generalized Weierstrass Integrability of the Abel Differential Equations
    Jaume Llibre
    Clàudia Valls
    [J]. Mediterranean Journal of Mathematics, 2013, 10 : 1749 - 1760
  • [27] On Differential Equations of Integrable Billiard Tables
    Vladimir DRAGOVIC
    Andrey E.MIRONOV
    [J]. Acta Mathematica Sinica,English Series, 2024, (01) : 417 - 424
  • [28] On Differential Equations of Integrable Billiard Tables
    Vladimir Dragović
    Andrey E. Mironov
    [J]. Acta Mathematica Sinica, English Series, 2024, 40 : 417 - 424
  • [29] On Differential Equations of Integrable Billiard Tables
    Dragovic, Vladimir
    Mironov, Andrey E.
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (01) : 417 - 424
  • [30] Coverings and integrable pseudosymmetries of differential equations
    Chetverikov, V. N.
    [J]. DIFFERENTIAL EQUATIONS, 2017, 53 (11) : 1428 - 1439