We study k-jet ampleness of line bundles on hyperelliptic surfaces using vanishing theorems. Our main result states that on a hyperelliptic surface of an arbitrary type, a line bundle of type (m, m) with m≥k+2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${m\geq k+2}$$\end{document} is k-jet ample.
机构:
Univ Roma Tre, Dipartimento Matemat, Largo San Leonardo Murialdo 1, I-00146 Rome, ItalyUniv Roma Tre, Dipartimento Matemat, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
Knutsen, Andreas Leopold
Lopez, Angelo Felice
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tre, Dipartimento Matemat, Largo San Leonardo Murialdo 1, I-00146 Rome, ItalyUniv Roma Tre, Dipartimento Matemat, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
机构:
Univ Tras Os Montes & Alto Douro, Dept Matemat, P-5001801 Vila Real, PortugalUniv Tras Os Montes & Alto Douro, Dept Matemat, P-5001801 Vila Real, Portugal
Rito, Carlos
Marti Sanchez, Maria
论文数: 0引用数: 0
h-index: 0
机构:
Nebrija Univ, Madrid 28040, SpainUniv Tras Os Montes & Alto Douro, Dept Matemat, P-5001801 Vila Real, Portugal