Ball convergence theorems for Halley’s method in Banach space

被引:0
|
作者
Ioannis K. Argyros
Hongmin Ren
机构
[1] Cameron University,Department of Mathematical Sciences
[2] Hangzhou Polytechnic,College of Information and Electronics
关键词
Newton’s method; Halley’s method; Banach space; Ball convergence; Convex majorants; Radius of convergence; 65G99; 65J15; 47H17; 47J05; 49M15;
D O I
10.1007/s12190-011-0490-3
中图分类号
学科分类号
摘要
We provide local convergence results for Halley’s method in order to approximate a locally unique zero of an operator in a Banach space setting using convex majorants. Kantorovich-type and Smale-type results are considered as applications and special cases.
引用
收藏
页码:453 / 465
页数:12
相关论文
共 50 条
  • [31] On the Global Convergence of Improved Halley's Method
    Barrada, Mohammed
    Hasnaoui, Moulay Lahcen
    Ouaissa, Mariya
    ENGINEERING LETTERS, 2020, 28 (02) : 609 - 615
  • [32] Unifying semilocal and local convergence of Newton's method on Banach space with a convergence structure
    Argyros, Ioannis K.
    Behl, Ramandeep
    Motsa, S. S.
    APPLIED NUMERICAL MATHEMATICS, 2017, 115 : 225 - 234
  • [33] On the global convergence of improved Halley’s method
    Barrada, Mohammed
    Hasnaoui, Moulay Lahcen
    Ouaissa, Mariya
    Barrada, Mohammed (barrada.med@gmail.com), 1600, International Association of Engineers (28): : 609 - 615
  • [34] Convergence of Halley’s method for operators with the bounded second Fréchet-derivative in Banach spaces
    Ioannis K Argyros
    Yeol Je Cho
    Hongmin Ren
    Journal of Inequalities and Applications, 2013
  • [35] On the semilocal convergence behavior for Halley's method
    Ling, Yonghui
    Xu, Xiubin
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 58 (03) : 597 - 618
  • [36] Local convergence of Super Halley's method under weaker conditions on Frechet derivative in Banach spaces
    Kumar, Abhimanyu
    Gupta, D. K.
    JOURNAL OF ANALYSIS, 2020, 28 (01): : 35 - 44
  • [37] On the semilocal convergence behavior for Halley’s method
    Yonghui Ling
    Xiubin Xu
    Computational Optimization and Applications, 2014, 58 : 597 - 618
  • [38] CONVERGENCE THEOREMS IN BANACH ALGEBRAS
    BEAUWENS, R
    VANBINNEBEEK, JJ
    PACIFIC JOURNAL OF MATHEMATICS, 1977, 68 (01) : 13 - 24
  • [39] Improving the order and rates of convergence for the super-Halley method in Banach spaces
    Argyros, Ioannis K.
    Korean Journal of Computational & Applied Mathematics, 1998, 5 (02): : 465 - 474
  • [40] Improving the order and rates of convergence for the Super-Halley method in Banach spaces
    Department of Mathematics, Cameron University, Lawton, OK 73505, United States
    J. Appl. Math. Comp., 2 (465-474):