A local discontinuous Galerkin method for the Burgers–Poisson equation

被引:2
|
作者
Hailiang Liu
Nattapol Ploymaklam
机构
[1] Iowa State University,Mathematics Department
来源
Numerische Mathematik | 2015年 / 129卷
关键词
65M60; 65M12; 35Q53;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we design, analyze and test a local discontinuous Galerkin method for solving the Burgers–Poisson equation. This model, proposed by Whitham [Linear and nonlinear waves, 1974] as a simplified model for shallow water waves, admits conservation of both momentum and energy as two invariants. The proposed numerical method is high order accurate and preserves two invariants, hence producing solutions with satisfying long time behavior. The L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-stability of the scheme for general solutions is a consequence of the energy preserving property. The optimal order of accuracy for polynomial elements of even degree is proven. A series of numerical tests is provided to illustrate both accuracy and capability of the method.
引用
收藏
页码:321 / 351
页数:30
相关论文
共 50 条
  • [31] Fourier analysis of the local discontinuous Galerkin method for the linearized KdV equation
    Le Roux, Daniel Y.
    GEM-INTERNATIONAL JOURNAL ON GEOMATHEMATICS, 2022, 13 (01)
  • [32] The local discontinuous Galerkin finite element method for Burger's equation
    Shao, Long
    Feng, Xinlong
    He, Yinnian
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (11-12) : 2943 - 2954
  • [33] Central local discontinuous Galerkin method for the space fractional diffusion equation
    Sun, Jing
    Nie, Daxin
    Deng, Weihua
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1274 - 1287
  • [34] Error Estimates for the Iterative Discontinuous Galerkin Method to the Nonlinear Poisson-Boltzmann Equation
    Yin, Peimeng
    Huang, Yunqing
    Liu, Hailiang
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 23 (01) : 168 - 197
  • [35] A discontinuous Galerkin method for the Rosenau equation
    Choo, S. M.
    Chung, S. K.
    Kim, K. I.
    APPLIED NUMERICAL MATHEMATICS, 2008, 58 (06) : 783 - 799
  • [36] A discontinuous Galerkin method for the wave equation
    Adjerid, Slimane
    Temimi, Helmi
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (5-8) : 837 - 849
  • [37] A discontinuous Galerkin method¶for the plate equation
    P. Hansbo
    M.G. Larson
    CALCOLO, 2002, 39 : 41 - 59
  • [38] A discontinuous Galerkin method for the plate equation
    Hansbo, P
    Larson, MG
    CALCOLO, 2002, 39 (01) : 41 - 59
  • [39] Local discontinuous Galerkin approximations to Richards' equation
    Li, H.
    Farthing, M. W.
    Dawson, C. N.
    Miller, C. T.
    ADVANCES IN WATER RESOURCES, 2007, 30 (03) : 555 - 575
  • [40] A lumped Galerkin method for solving the Burgers equation
    Kutluay, S
    Esen, A
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (11) : 1433 - 1444