We shall show a spectral mapping property of the generalized Fredholm spectrum in the more general context of Banach algebras. This is an extension of (Schmoeger in Demonstr Math XXXI(4):723–733, 1998, Theorem 3.3). More precisely, for a∈A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$a \in {\mathcal{A}}$$\end{document} which is a complex semisimple Banach algebra with identity, we shall prove that if g is a analytic function on a neighbourhood of the spectrum of a and if it has no zero in the generalized Fredholm spectrum of a then g(a) is a generalized Fredholm element in A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{A}}$$\end{document}.
机构:
N W Univ, Unit Business Math & Informat, ZA-2520 Potchefstroom, South AfricaN W Univ, Unit Business Math & Informat, ZA-2520 Potchefstroom, South Africa
Grobler, J. J.
Raubenheimer, H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Johannesburg, Dept Math, ZA-2006 Johannesburg, South AfricaN W Univ, Unit Business Math & Informat, ZA-2520 Potchefstroom, South Africa