Generalized monotonicity analysis

被引:0
|
作者
Bruno H. Strulovici
Thomas A. Weber
机构
[1] Northwestern University,Department of Economics
[2] Stanford University,Department of Management Science and Engineering
来源
Economic Theory | 2010年 / 43卷
关键词
Aggregation; Comparative statics; Comparative dynamics; Monotone comparative statics; Parameterized equations; Parameter transformation; Quantitative monotonicity analysis; Robust inference; Supermodular games; C61; C43; C72; D11;
D O I
暂无
中图分类号
学科分类号
摘要
Complex economic models often lack the structure for the application of standard techniques in monotone comparative statics. Generalized monotonicity analysis (GMA) extends the available methods in several directions. First, it provides a way of finding parameter moves that yield monotonicity of model solutions. Second, it allows studying the monotonicity of functions or subsets of variables. Third, GMA naturally provides bounds on the sensitivity of variables to parameter changes. Fourth, GMA may be used to derive conditions under which monotonicity obtains with respect to functions of parameters, corresponding to imposed parameter moves. Fifth, GMA contributes insights into the theory of comparative statics, for example, with respect to dealing with constraints or exploiting additional information about the model structure. Several applications of GMA are presented, including constrained optimization, nonsupermodular games, aggregation, robust inference, and monotone comparative dynamics.
引用
收藏
页码:377 / 406
页数:29
相关论文
共 50 条
  • [41] MONOTONICITY PROPERTIES OF THE GENERALIZED STRUVE FUNCTIONS
    Ali, Rosihan M.
    Mondal, Saiful R.
    Nisar, Kottakkaran S.
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (02) : 575 - 598
  • [42] Trigonometric Series with a Generalized Monotonicity Condition
    Feng, Lei
    Totik, Vilmos
    Zhou, Song Ping
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (08) : 1289 - 1296
  • [43] Generalized positive sets and abstract monotonicity
    H. Mohebi
    A. R. Sattarzadeh
    Positivity, 2013, 17 : 601 - 620
  • [44] New classes of generalized invex monotonicity
    Xu, B.
    Zhu, D. L.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2006, 2006 (1)
  • [45] MONOTONICITY AND INEQUALITIES FOR THE GENERALIZED DISTORTION FUNCTION
    Ma, Xiaoyan
    Chu, Yuming
    Wang, Fei
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (06) : 1759 - 1766
  • [46] Generalized monotonicity in terms of differential inequalities
    Bessenyei, Mihaly
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (06) : 1473 - 1479
  • [47] A first order characterization of generalized monotonicity
    John, R
    MATHEMATICAL PROGRAMMING, 2000, 88 (01) : 147 - 155
  • [48] MONOTONICITY RESULT FOR GENERALIZED LOGARITHMIC MEANS
    Li, Xin
    Chen, Ch. -P.
    Qi, F.
    TAMKANG JOURNAL OF MATHEMATICS, 2007, 38 (02): : 177 - 181
  • [49] The generalized monotonicity property of the Perron root
    Al'pin Yu.A.
    Kolotilina L.Yu.
    Journal of Mathematical Sciences, 2007, 141 (6) : 1576 - 1585
  • [50] New classes of generalized invex monotonicity
    B. Xu
    D. L. Zhu
    Journal of Inequalities and Applications, 2006