Efficient multi-temporal hyperspectral signatures classification using a Gaussian-Bernoulli RBM based approach

被引:5
|
作者
Hemissi S. [1 ]
Farah I.R. [1 ]
机构
[1] Laboratoire RIADI, ENSI, Telecom Bretagne, Brest
关键词
efficient multi-temporal hyperspectral;
D O I
10.1134/S1054661816010211
中图分类号
学科分类号
摘要
This paper presents an efficient Gaussian-Bernoulli Restricted Boltzmann Machines (GB-RBM) framework in order to better address the classification challenge of remotely sensed images. The proposed approach relies on generating well-designed features for a new 3D modality of spectral signature. For this purpose, mesh smoothing is introduced to reduce noise while conserving the main geometric features of the multi-temporal spectral signature. Then, we propose the use of an RBM (Restricted Boltzmann Machine) framework as stand-alone non-linear classifier. The adapted framework focuses on a cooperative integrated generative-discriminative objective allowing the integration of modeling input features and their classification process in one-pass algorithm. The main benefit of the proposed approach is the ability to learn more discriminative features. We evaluated our approach within different scenarios and we demonstrated its usefulness for noisy high dimensional hyperspectral images. © 2016, Pleiades Publishing, Ltd.
引用
收藏
页码:190 / 196
页数:6
相关论文
共 50 条
  • [31] Land cover classification using multi-temporal MERIS vegetation indices
    Dash, J.
    Mathur, A.
    Foody, G. M.
    Curran, P. J.
    Chipman, J. W.
    Lillesand, T. M.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (06) : 1137 - 1159
  • [32] Classification of Multi-temporal SAR Data by Using Data Transform Based Features and Multiple Classifiers
    Yoo, Hee Young
    Park, No-Wook
    Hong, Sukyoung
    Lee, Kyungdo
    Kim, Yeseul
    KOREAN JOURNAL OF REMOTE SENSING, 2015, 31 (03) : 205 - 214
  • [33] Object-Based Classification of Wetlands in Newfoundland and Labrador Using Multi-Temporal PolSAR Data
    Mahdavi, Sahel
    Salehi, Bahram
    Amani, Meisam
    Granger, Jean Elizabeth
    Brisco, Brian
    Huang, Weimin
    Hanson, Alan
    CANADIAN JOURNAL OF REMOTE SENSING, 2017, 43 (05) : 432 - 450
  • [34] PARCEL BASED CLASSIFICATION FOR AGRICULTURAL MAPPING AND MONITORING USING MULTI-TEMPORAL SATELLITE IMAGE SEQUENCES
    Kussul, Nataliia
    Lemoine, Guido
    Galego, Javier
    Skakun, Sergii
    Lavreniuk, Mykola
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 165 - 168
  • [35] Monitoring crop biomass accumulation using multi-temporal hyperspectral remote sensing data
    Liu, JG
    Miller, JR
    Pattey, E
    Haboudane, D
    Strachan, IB
    Hinther, M
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 1637 - 1640
  • [36] A multi-temporal method for detection of underground natural gas leakage using hyperspectral imaging
    Ran, Weiwei
    Jiang, Jinbao
    Wang, Xinda
    Liu, Ziwei
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2022, 117
  • [37] Estimation of Nitrogen Content Based on the Hyperspectral Vegetation Indexes of Interannual and Multi-Temporal in Cotton
    Ma, Lulu
    Chen, Xiangyu
    Zhang, Qiang
    Lin, Jiao
    Yin, Caixia
    Ma, Yiru
    Yao, Qiushuang
    Feng, Lei
    Zhang, Ze
    Lv, Xin
    AGRONOMY-BASEL, 2022, 12 (06):
  • [38] Multi-Temporal LiDAR and Hyperspectral Data Fusion for Classification of Semi-Arid Woody Cover Species
    Norton, Cynthia L.
    Hartfield, Kyle
    Collins, Chandra D. Holifield
    van Leeuwen, Willem J. D.
    Metz, Loretta J.
    REMOTE SENSING, 2022, 14 (12)
  • [39] Denoising and wavelet-based feature extraction of MODIS multi-temporal vegetation signatures
    Bruce, Lori Mann
    Mathur, Abhinav
    Byrd, John A., Jr.
    GISCIENCE & REMOTE SENSING, 2006, 43 (01) : 67 - 77
  • [40] Evaluation of Tree Species Classification Methods using Multi-Temporal Satellite Images
    Saha, Arnav
    Sastry, Srikumar
    Dave, Viral A.
    Ghosh, Ranendu
    2020 IEEE Latin American GRSS and ISPRS Remote Sensing Conference, LAGIRS 2020 - Proceedings, 2020, : 40 - 43