The Isoperimetric inequality

被引:1
|
作者
S Kesavan
机构
[1] The Institute of Mathematical Sciences,
关键词
Isoperimetric inequality; moving planes; Neumann problem; lower contact set; elliptic equations;
D O I
10.1007/BF02836181
中图分类号
学科分类号
摘要
A new proof (due to X Cabre) of the classical isoperimetric theorem, based on Alexandrov’s idea of moving planes, will be presented. Compared to the usual proofs, which use geometric measure theory, this proof will be based on elementary ideas from calculus and partial differential equations (Laplace equation).
引用
收藏
页码:8 / 18
页数:10
相关论文
共 50 条
  • [41] A differential inequality for the isoperimetric profile
    Bayle, V
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (07) : 311 - 342
  • [42] A Semigroup Version of the Isoperimetric Inequality
    Marc Preunkert
    [J]. Semigroup Forum, 2004, 68 : 233 - 245
  • [43] THE ISOPERIMETRIC INEQUALITY AND RATIONAL APPROXIMATION
    GAMELIN, TW
    KHAVINSON, D
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1989, 96 (01): : 18 - 30
  • [44] ON AN ISOPERIMETRIC-ISODIAMETRIC INEQUALITY
    Mondino, Andrea
    Spadaro, Emanuele
    [J]. ANALYSIS & PDE, 2017, 10 (01): : 95 - 126
  • [45] AN ISOPERIMETRIC INEQUALITY FOR THE WIENER SAUSAGE
    Peres, Yuval
    Sousi, Perla
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (04) : 1000 - 1014
  • [46] A TOPOLOGICAL APPLICATION OF THE ISOPERIMETRIC INEQUALITY
    GROMOV, M
    MILMAN, VD
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1983, 105 (04) : 843 - 854
  • [47] A generalized affine isoperimetric inequality
    W. Chen
    R. Howard
    E. Lutwak
    D. Yang
    G. Zhang
    [J]. The Journal of Geometric Analysis, 2004, 14 : 597 - 612
  • [48] A STRENGTHENED ISOPERIMETRIC INEQUALITY FOR SIMPLICES
    REZNIKOV, AG
    [J]. LECTURE NOTES IN MATHEMATICS, 1991, 1469 : 90 - 93
  • [49] ON THE QUANTITATIVE ISOPERIMETRIC INEQUALITY IN THE PLANE
    Bianchini, Chiara
    Croce, Gisella
    Henrot, Antoine
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (02) : 517 - 549
  • [50] A spectral isoperimetric inequality for cones
    Pavel Exner
    Vladimir Lotoreichik
    [J]. Letters in Mathematical Physics, 2017, 107 : 717 - 732