Comparison of linear differential operators

被引:0
|
作者
R. M. Trigub
机构
[1] Donetsk National University,
来源
Mathematical Notes | 2007年 / 82卷
关键词
linear differential operator; algebraic polynomial; Kolmogorov multiplicative inequality; Fourier series; Schoenberg spline; Hölder’s inequality; Minkowski’s inequality;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the question of the existence of the inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\| {Q(D)f} \right\|_{L_q } \leqslant \gamma _0 \left\| {P(D)f} \right\|_{L_p } $$ \end{document}, where P and Q are algebraic polynomials, D = d/dx, and γ0 is independent of the function f. We obtain criteria (necessary and simultaneously sufficient conditions) for the existence of such inequalities for functions on the circle, on the whole line, and on the semiaxis. Besides, for the semiaxis, we obtain an inequality for q = ∞ and any p ≥ 1 with the smallest constant γ0.
引用
收藏
页码:380 / 394
页数:14
相关论文
共 50 条