In this paper, we study the question of the existence of the inequality \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\left\| {Q(D)f} \right\|_{L_q } \leqslant \gamma _0 \left\| {P(D)f} \right\|_{L_p } $$
\end{document}, where P and Q are algebraic polynomials, D = d/dx, and γ0 is independent of the function f. We obtain criteria (necessary and simultaneously sufficient conditions) for the existence of such inequalities for functions on the circle, on the whole line, and on the semiaxis. Besides, for the semiaxis, we obtain an inequality for q = ∞ and any p ≥ 1 with the smallest constant γ0.
机构:
Univ Salerno, DipMat, Via Giovanni Paolo II 123, I-84084 Fisciano, SA, ItalyUniv Salerno, DipMat, Via Giovanni Paolo II 123, I-84084 Fisciano, SA, Italy
Pugliese, Fabrizio
Sparano, Giovanni
论文数: 0引用数: 0
h-index: 0
机构:
Univ Salerno, DipMat, Via Giovanni Paolo II 123, I-84084 Fisciano, SA, ItalyUniv Salerno, DipMat, Via Giovanni Paolo II 123, I-84084 Fisciano, SA, Italy