Efficient initialization for multi-fidelity surrogate-based optimization

被引:0
|
作者
Jeroen Wackers
Riccardo Pellegrini
Andrea Serani
Michel Visonneau
Matteo Diez
机构
[1] CNRS UMR 6598,LHEEA Lab
[2] Centrale Nantes,undefined
[3] National Research Council,undefined
[4] Institute of Marine Engineering (CNR-INM),undefined
关键词
Multi-fidelity; Surrogate-based optimization; Stochastic radial basis functions; Initial training set;
D O I
暂无
中图分类号
学科分类号
摘要
The performance of surrogate-based optimization is dependent on the surrogate training set, certainly for realistic optimizations where the high cost of computing the training set data imposes small training set sizes. This is especially true for multi-fidelity surrogate models, where different training sets exist for each fidelity. Adaptive sampling methods have been developed to improve the fitting capabilities of surrogate models, adding training points only where necessary or most useful to the optimization process (i.e., providing the highest knowledge gain) and avoiding the need for an a priori design of experiments. Nevertheless, the efficiency of the adaptive sampling is highly affected by its initialization. The paper presents and discusses a novel initialization strategy with a limited training set for adaptive sampling. The proposed strategy aims to reduce the computational cost of evaluating the initial training set. Furthermore, it allows the surrogate model to adapt more freely to the data. In this work, the proposed approach is applied to single- and multi-fidelity stochastic radial basis functions for an analytical test problem and the shape optimization of a NACA hydrofoil. Numerical results show that the results of the surrogate-based optimization are improved, thanks to a more effective and efficient domain space exploration and a significant reduction of high-fidelity evaluations.
引用
收藏
页码:291 / 307
页数:16
相关论文
共 50 条
  • [31] On the multi-fidelity approach in surrogate-based multidisciplinary design optimisation of high-aspect-ratio wing aircraft
    Lobo do Vale, J.
    Sohst, M.
    Crawford, C.
    Suleman, A.
    Potter, G.
    Banerjee, S.
    AERONAUTICAL JOURNAL, 2023, 127 (1307): : 2 - 23
  • [32] A Single-Fidelity Surrogate Modeling Method Based on Nonlinearity Integrated Multi-Fidelity Surrogate
    Li, Kunpeng
    He, Xiwang
    Lv, Liye
    Zhu, Jiaxiang
    Hao, Guangbo
    Li, Haiyang
    Song, Xueguan
    JOURNAL OF MECHANICAL DESIGN, 2023, 145 (09)
  • [33] An efficient and multi-fidelity reliability-based design optimization method based on a novel surrogate model local update strategy
    Liu, Xiaohan
    Deng, Jie
    Chen, Hao
    Zhai, Guofu
    Wu, Jingwei
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 430
  • [34] A multi-fidelity shape optimization via surrogate modeling for civil structures
    Ding, Fei
    Kareem, Ahsan
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2018, 178 : 49 - 56
  • [35] A conservative multi-fidelity surrogate model-based robust optimization method for simulation-based optimization
    Hu, Jiexiang
    Zhang, Lili
    Lin, Quan
    Cheng, Meng
    Zhou, Qi
    Liu, Huaping
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2021, 64 (04) : 2525 - 2551
  • [36] A conservative multi-fidelity surrogate model-based robust optimization method for simulation-based optimization
    Jiexiang Hu
    Lili Zhang
    Quan Lin
    Meng Cheng
    Qi Zhou
    Huaping Liu
    Structural and Multidisciplinary Optimization, 2021, 64 : 2525 - 2551
  • [37] A multi-fidelity surrogate model based on support vector regression
    Maolin Shi
    Liye Lv
    Wei Sun
    Xueguan Song
    Structural and Multidisciplinary Optimization, 2020, 61 : 2363 - 2375
  • [38] A multi-fidelity surrogate model based on design variable correlations
    Lai, Xiaonan
    Pang, Yong
    Liu, Fuwen
    Sun, Wei
    Song, Xueguan
    ADVANCED ENGINEERING INFORMATICS, 2024, 59
  • [39] Multi-fidelity surrogate model ensemble based on feasible intervals
    Shuai Zhang
    Pengwei Liang
    Yong Pang
    Jianji Li
    Xueguan Song
    Structural and Multidisciplinary Optimization, 2022, 65
  • [40] Hybrid uncertainty propagation based on multi-fidelity surrogate model
    Liu, Jinxing
    Shi, Yan
    Ding, Chen
    Beer, Michael
    COMPUTERS & STRUCTURES, 2024, 293