Experimental modeling of lightning discharge into soil

被引:0
|
作者
V. E. Fortov
V. P. Smirnov
E. E. Son
Yu. A. Bykov
E. V. Grabovskii
A. N. Gribov
G. M. Oleinik
A. S. Savel’ev
机构
[1] Russian Academy of Sciences,Joint Institute for High Temperatures
来源
High Temperature | 2015年 / 53卷
关键词
Current Pulse; Power Supply System; Lightning Discharge; Soil Resistance; Power Delivery;
D O I
暂无
中图分类号
学科分类号
摘要
We present measurements of the electrical properties of soil using a complex designed for testing of lightning protection systems and for measuring the conductivity of soil, including ground electrodes, at currents close to the lightning discharge current. The working resistance of soil is in the range from 10 to 100 Ω at a discharge current of 50 kA and a pulse energy of approximately 4 MJ. The results of experiments in an open field area at the voltage on a circuit of 2 MV are presented. Based on the data obtained, we plot the time profile of the soil resistance upon passing a current pulse of the amplitude of tens of kiloamperes through the soil. A dynamic change in soil resistance with time, a “degradation” of soil resistance, and the formation of a spark channel along the soil surface are reported.
引用
收藏
页码:775 / 778
页数:3
相关论文
共 50 条
  • [31] Effect of Soil Moisture on Arc Discharge in Sandy Soils Under Lightning Struck
    Zhang, Bo
    Wang, Sen
    Wu, Jinpeng
    IEEE LETTERS ON ELECTROMAGNETIC COMPATIBILITY PRACTICE AND APPLICATIONS, 2020, 2 (04): : 111 - 114
  • [32] Experimental Investigation of the Lightning Impulse Behavior of Wet Sandy Soil
    Datsios, Zacharias G.
    Mikropoulos, Pantelis N.
    Staikos, Evangelos T.
    Tsovilis, Thomas E.
    Patsalis, Diamantis G.
    Vlachopoulos, Dimitrios
    Ganatsios, Stergios
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2022, 58 (01) : 212 - 223
  • [33] Modeling of skin effect in simulation of the direct lightning discharge in high voltage line
    Zdziarski, Tomasz
    PRZEGLAD ELEKTROTECHNICZNY, 2008, 84 (10): : 101 - 103
  • [34] Modeling of Corona Discharge on a Transmission Line Conductor Struck by Lightning for FDTD Calculations
    Tran Huu Thang
    Baba, Yoshihiro
    Nagaoka, Naoto
    Ametani, Akihiro
    Takami, Jun
    Okabe, Shigemitsu
    Rakov, Vladimir A.
    2010 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY & TECHNICAL EXHIBITION ON EMC RF/MICROWAVE MEASUREMENTS & INSTRUMENTATION, 2010, : 1309 - 1312
  • [35] Experimental investigation and modeling of corona characteristics under lightning impulses
    Zhang, Xiaoqing
    Zhang, Yongzheng
    JOURNAL OF ELECTROSTATICS, 2017, 90 : 85 - 90
  • [36] Experimental Investigation and Modeling of Surge Currents in Lightning Protection System
    Maslowski, Grzegorz
    Rakov, Vladimir A.
    Ziemba, Robert
    2014 XXXITH URSI GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM (URSI GASS), 2014,
  • [37] Lightning Discharge Parameters in Building Lightning Protection Calculations
    Bagdanavicius, N.
    Drabatiukas, A.
    Kilius, S.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2009, (03) : 103 - 106
  • [38] Lightning attachment processes of an "anomalous" triggered lightning discharge
    Wang, D.
    Gamerota, W. R.
    Uman, M. A.
    Takagi, N.
    Hill, J. D.
    Pilkey, J.
    Ngin, T.
    Jordan, D. M.
    Mallick, S.
    Rakov, V. A.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (03) : 1524 - 1533
  • [39] Three-dimensional fractal modeling of intracloud lightning discharge in a New Mexico thunderstorm and comparison with lightning mapping observations
    Riousset, Jeremy A.
    Pasko, Victor P.
    Krehbiel, Paul R.
    Thomas, Ronald J.
    Rison, William
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D15)
  • [40] MODELING OF LIGHTNING
    QUINN, DW
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1987, 29 (02) : 107 - 118