Bicomplex Quantum Mechanics: I. The Generalized Schrödinger Equation

被引:0
|
作者
Rochon D. [1 ]
Tremblay S. [1 ]
机构
[1] Département de mathématiques et d’informatique, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, G9A 5H7, QC
关键词
Commutative Ring; Continuity Equation; Discrete Symmetry; Quantum Mechanics; Wave Function;
D O I
10.1007/s00006-004-0015-3
中图分类号
学科分类号
摘要
We introduce the set of bicomplex numbers$$\mathbb{T}$$ which is a commutative ring with zero divisors defined by (Formula presented.) We present the conjugates and the moduli associated with the bicomplex numbers. Then we study the bicomplex Schrödinger equation and found the continuity equations. The discrete symmetries of the system of equations describing the bicomplex Schrödinger equation are obtained. Finally, we study the bicomplex Born formulas under the discrete symmetries. We obtain the standard Born’s formula for the class of bicomplex wave functions having a null hyperbolic angle. © 2004, Birkhäuser Verlag, Basel.
引用
收藏
页码:231 / 248
页数:17
相关论文
共 50 条