Uniform approximation rates and metric entropy of shallow neural networks

被引:0
|
作者
Limin Ma
Jonathan W. Siegel
Jinchao Xu
机构
[1] Pennsylvania State University,Department of Mathematics
来源
关键词
Neural networks; Approximation rates; Metric entropy; Finite element methods;
D O I
暂无
中图分类号
学科分类号
摘要
We study the approximation properties of the variation spaces corresponding to shallow neural networks with respect to the uniform norm. Specifically, we consider the spectral Barron space, which consists of the convex hull of decaying Fourier modes, and the convex hull of indicator functions of half-spaces, which corresponds to shallow neural networks with sigmoidal activation function. Up to logarithmic factors, we determine the metric entropy and nonlinear dictionary approximation rates for these spaces with respect to the uniform norm. Combined with previous results with respect to the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm, this also gives the metric entropy up to logarithmic factors with respect to any Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-norm with 1≤p≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p\le \infty $$\end{document}. In addition, we study the approximation rates for high-order spectral Barron spaces using shallow neural networks with ReLUk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^k$$\end{document} activation function. Specifically, we show that for a sufficiently high-order spectral Barron space, ReLUk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^k$$\end{document} networks are able to achieve an approximation rate of n-(k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{-(k+1)}$$\end{document} with respect to the uniform norm.
引用
收藏
相关论文
共 50 条
  • [21] An Entropy Metric for Regular Grammar Classification and Learning with Recurrent Neural Networks
    Zhang, Kaixuan
    Wang, Qinglong
    Giles, C. Lee
    ENTROPY, 2021, 23 (01) : 1 - 19
  • [22] Approximation rates for neural networks with encodable weights in smoothness spaces
    Guehring, Ingo
    Raslan, Mones
    NEURAL NETWORKS, 2021, 134 : 107 - 130
  • [23] Bounds on rates of approximation by neural networks in Lp-spaces
    Sidlofová, T
    ARTIFICIAL NEURAL NETS AND GENETIC ALGORITHMS, PROCEEDINGS, 2003, : 23 - 27
  • [24] POSSIBILITY OF UNIFORM RATIONAL APPROXIMATION IN SPHERICAL METRIC
    GAUTHIER, PM
    ROTH, A
    WALSH, JL
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1976, 28 (01): : 112 - 115
  • [25] Uniform approximation and gamma networks
    Sandberg, IW
    Xu, LL
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 1014 - 1018
  • [26] Uniform approximation and gamma networks
    Sandberg, IW
    Xu, LL
    NEURAL NETWORKS, 1997, 10 (05) : 781 - 784
  • [27] Uniform Approximation of Impulsive Hopfield Cellular Neural Networks by Piecewise Constant Arguments on [τ,∞)
    Torres, R.
    Pinto, M.
    Castillo, S.
    Kostic, M.
    ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)
  • [28] Time-delay neural networks, Volterra series, and rates of approximation
    Sandberg, IW
    ISCAS '98 - PROCEEDINGS OF THE 1998 INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-6, 1998, : B362 - B365
  • [29] Time-delay neural networks, volterra series, and rates of approximation
    Irwin W. Sandberg
    Circuits, Systems and Signal Processing, 1998, 17 : 653 - 665
  • [30] Time-delay neural networks, Volterra series, and rates of approximation
    Sandberg, IW
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1998, 17 (05) : 653 - 665