Front propagation in the shadow wave-pinning model

被引:0
|
作者
Daniel Gomez
King-Yeung Lam
Yoichiro Mori
机构
[1] University of Pennsylvania,Department of Mathematics
[2] The Ohio State University,Department of Mathematics
来源
Journal of Mathematical Biology | 2023年 / 86卷
关键词
35K57; 35B25; 35B40; 35B30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a non-local bistable reaction–diffusion equation which is a simplified version of the wave-pinning model of cell polarization. In the small diffusion limit, a typical solution u(x, t) of this model approaches one of the stable states of the bistable nonlinearity in different parts of the spatial domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, separated by an interface moving at a normal velocity regulated by the integral ∫Ωu(x,t)dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _\Omega u(x,t)\,dx$$\end{document}. In what is often referred to as wave-pinning, feedback between mass-conservation and bistablity causes the interface to slow and approach a fixed limit. In the limit of a small diffusivity ε2≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^2\ll 1$$\end{document}, we prove that for any 0<γ<1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\gamma <1/2$$\end{document} the interface can be estimated within O(εγ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon ^\gamma )$$\end{document} of the location as predicted using formal asymptotics. We also discuss the sharpness of our result by comparing the formal asymptotic results with numerical simulations.
引用
收藏
相关论文
共 50 条
  • [41] Model for propagation of a transformation front in a viscoelastic medium
    Knyazeva, A.G.
    Dyukarev, E.A.
    Fizika Goreniya i Vzryva, 2000, 36 (04): : 41 - 51
  • [42] Species coexistence by front pinning
    Kyriazopoulos, Paris
    Nathan, Jonathan
    Meron, Ehud
    ECOLOGICAL COMPLEXITY, 2014, 20 : 271 - 281
  • [43] Noise propagation in wave-front sensing with phase diversity
    Off. Natl. Etud. de Rech. Aerospat., B.P. 72, 92322 Châtillon CEDEX, France
    不详
    Appl. Opt., 23 (4967-4979):
  • [44] An ultrasonic wave-front with propagation direction dependent frequency
    Palmer, S. B.
    Hill, S.
    Rowlands, G.
    Dixon, S.
    NONDESTRUCTIVE CHARACTERIZATION FOR COMPOSITE MATERIALS, AEROSPACE ENGINEERING, CIVIL INFRASTRUCTURE, AND HOMELAND SECURITY 2013, 2013, 8694
  • [45] Noise propagation in wave-front sensing with phase diversity
    Meynadier, L
    Michau, V
    Velluet, MT
    Conan, JM
    Mugnier, LM
    Rousset, G
    APPLIED OPTICS, 1999, 38 (23) : 4967 - 4979
  • [46] PLASTIC WAVE-FRONT PROPAGATION IN CYLINDRICAL-BARS
    BUCHAR, J
    BILEK, Z
    POLCAR, P
    KNESL, Z
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1987, 37 (07) : 830 - 845
  • [47] TECHNIQUE FOR OBSERVING LOUDSPEAKER WAVE-FRONT PROPAGATION.
    Nomoto, Isami
    Iwahara, Makoto
    Onoye, Hideo
    1600, (24):
  • [48] PHASE DIFFERENCE IN BREAK OF PLANE WAVE FRONT AS DETERMINED BY SHADOW DIFFRACTION METHOD
    VASILEV, LA
    DOKLADY AKADEMII NAUK SSSR, 1964, 157 (04): : 830 - &
  • [49] Seismic Wave Propagation and Basin Amplification in the Wasatch Front, Utah
    Moschetti, Morgan P.
    Churchwell, David
    Thompson, Eric M.
    Rekoske, John M.
    Wolin, Emily
    Boyd, Oliver S.
    SEISMOLOGICAL RESEARCH LETTERS, 2021, 92 (06) : 3626 - 3641
  • [50] Ultrasound Doppler Signal Simulation Based on Wave front Propagation
    Wei Yongmei
    Peng Hu
    Feng Shuai
    NINTH INTERNATIONAL SYMPOSIUM ON PRECISION MECHANICAL MEASUREMENTS, 2019, 11343