Front propagation in the shadow wave-pinning model

被引:0
|
作者
Daniel Gomez
King-Yeung Lam
Yoichiro Mori
机构
[1] University of Pennsylvania,Department of Mathematics
[2] The Ohio State University,Department of Mathematics
来源
Journal of Mathematical Biology | 2023年 / 86卷
关键词
35K57; 35B25; 35B40; 35B30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a non-local bistable reaction–diffusion equation which is a simplified version of the wave-pinning model of cell polarization. In the small diffusion limit, a typical solution u(x, t) of this model approaches one of the stable states of the bistable nonlinearity in different parts of the spatial domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, separated by an interface moving at a normal velocity regulated by the integral ∫Ωu(x,t)dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _\Omega u(x,t)\,dx$$\end{document}. In what is often referred to as wave-pinning, feedback between mass-conservation and bistablity causes the interface to slow and approach a fixed limit. In the limit of a small diffusivity ε2≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^2\ll 1$$\end{document}, we prove that for any 0<γ<1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\gamma <1/2$$\end{document} the interface can be estimated within O(εγ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon ^\gamma )$$\end{document} of the location as predicted using formal asymptotics. We also discuss the sharpness of our result by comparing the formal asymptotic results with numerical simulations.
引用
收藏
相关论文
共 50 条
  • [1] Front propagation in the shadow wave-pinning model
    Gomez, Daniel
    Lam, King-Yeung
    Mori, Yoichiro
    JOURNAL OF MATHEMATICAL BIOLOGY, 2023, 86 (05)
  • [2] Deterministic Versus Stochastic Cell Polarisation Through Wave-Pinning
    Georg R. Walther
    Athanasius F. M. Marée
    Leah Edelstein-Keshet
    Verônica A. Grieneisen
    Bulletin of Mathematical Biology, 2012, 74 : 2570 - 2599
  • [3] ASYMPTOTIC AND BIFURCATION ANALYSIS OF WAVE-PINNING IN A REACTION-DIFFUSION MODEL FOR CELL POLARIZATION
    Mori, Yoichiro
    Jilkine, Alexandra
    Edelstein-Keshet, Leah
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (04) : 1401 - 1427
  • [4] Deterministic Versus Stochastic Cell Polarisation Through Wave-Pinning
    Walther, Georg R.
    Maree, Athanasius F. M.
    Edelstein-Keshet, Leah
    Grieneisen, Veronica A.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2012, 74 (11) : 2570 - 2599
  • [5] Superluminal wave front propagation at the shadow area behind an opaque disk
    Vasnetsov, M.
    Pas'ko, V.
    Khoroshun, A.
    Slyusar, V.
    Marienko, I.
    Soskin, M.
    8TH INTERNATIONAL CONFERENCE ON CORRELATION OPTICS, 2008, 7008
  • [6] Wave-pinning and cell polarity from a bistable reaction-diffusion system
    Mori, Yoichiro
    Jilkine, Alexandra
    Edelstein-Keshet, Leah
    BIOPHYSICAL JOURNAL, 2008, 94 (09) : 3684 - 3697
  • [7] Cellular polarization: Interaction between extrinsic bounded noises and the wave-pinning mechanism
    de Franciscis, Sebastiano
    d'Onofrio, Alberto
    PHYSICAL REVIEW E, 2013, 88 (03):
  • [8] Pinning and de-pinning phenomena in front propagation in heterogeneous media
    Dirr, N
    Yip, NK
    INTERFACES AND FREE BOUNDARIES, 2006, 8 (01) : 79 - 109
  • [9] Observation of superluminal wave-front propagation at the shadow area behind an opaque disk
    Vasnetsov, M.
    Pas'ko, V.
    Khoroshun, A.
    Slyusar, V.
    Soskin, M.
    OPTICS LETTERS, 2007, 32 (13) : 1830 - 1832
  • [10] Observation of superluminal wave-front propagation at the shadow area behind an opaque disk
    Vasnetsov, M.
    OPTICS LETTERS, 2008, 33 (01) : 70 - 70