Gaussian Fluctuation for the Number of Particles in Airy, Bessel, Sine, and Other Determinantal Random Point Fields

被引:1
|
作者
Alexander B. Soshnikov
机构
[1] California Institute of Technology,Department of Mathematics
[2] University of California,Department of Mathematics
[3] Davis,undefined
来源
关键词
determinantal random point fields; central limit theorem; random matrices; Airy and Bessel kernels; classical compact groups;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the Central Limit Theorem (CLT) for the number of eigenvalues near the spectrum edge for certain Hermitian ensembles of random matrices. To derive our results, we use a general theorem, essentially due to Costin and Lebowitz, concerning the Gaussian fluctuation of the number of particles in random point fields with determinantal correlation functions. As another corollary of the Costin–Lebowitz Theorem we prove the CLT for the empirical distribution function of the eigenvalues of random matrices from classical compact groups.
引用
收藏
页码:491 / 522
页数:31
相关论文
共 43 条
  • [21] Perturbation theory for large Stokes number particles in random velocity fields
    P. Olla
    M. R. Vuolo
    The European Physical Journal B, 2008, 65 : 279 - 288
  • [22] Sufficient dimension reduction for spatial point processes directed by Gaussian random fields
    Guan, Yongtao
    Wang, Hansheng
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 367 - 387
  • [23] Expected number and height distribution of critical points of smooth isotropic Gaussian random fields
    Cheng, Dan
    Schwartzman, Armin
    BERNOULLI, 2018, 24 (4B) : 3422 - 3446
  • [24] Interrelating scattering characteristics to internal electric fields for Gaussian-random-sphere particles
    Tyynela, Jani
    Muinonen, Karri
    Zubko, Evgenij
    Videen, Gorden
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2008, 109 (12-13): : 2207 - 2218
  • [25] Efficient modeling of random fields by using Gaussian process inducing-point approximations
    Wang, Fan
    Chen, Jian Elton
    COMPUTERS AND GEOTECHNICS, 2023, 157
  • [26] Transformations of Gaussian random fields to Brownian sheet and nonparametric change-point tests
    McKeague, IW
    Sun, YQ
    STATISTICS & PROBABILITY LETTERS, 1996, 28 (04) : 311 - 319
  • [27] Correction to: On maximum of Gaussian random fields having unique maximum point of its variance
    Sergey G. Kobelkov
    Vladimir I. Piterbarg
    Igor V. Rodionov
    Extremes, 2021, 24 : 85 - 90
  • [28] Number Rigidity in Superhomogeneous Random Point Fields (vol 166, pg 1016, 2017)
    Ghosh, Subhro
    Lebowitz, Joel
    JOURNAL OF STATISTICAL PHYSICS, 2017, 166 (3-4) : 1028 - 1028
  • [29] Reliability of Readout of Random Point Fields with a Limited Number of Threshold Levels of the Scanning Aperture
    Reznik, A. L.
    Efimov, V. M.
    Solov'ev, A. A.
    Torgov, A. V.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2014, 50 (06) : 582 - 588
  • [30] Point processes of exceedances by Gaussian random fields with applications to asymptotic locations of extreme order statistics
    Liu, Huiyan
    Tan, Zhongquan
    STATISTICS & PROBABILITY LETTERS, 2022, 189