Using the formalism of Newton hyperplane arrangements, we resolve the open questions regarding angle rank left over from work of the first two authors with Roe and Vincent. As a consequence we end up generalizing theorems of Lenstra–Zarhin and Tankeev proving several new cases of the Tate conjecture for abelian varieties over finite fields. We also obtain an effective version of a recent theorem of Zarhin bounding the heights of coefficients in multiplicative relations among Frobenius eigenvalues.
机构:
Univ Grenoble 1, Inst Fournier, F-38402 St Martin Dheres, France
Polish Acad Sci, Inst Math, PL-00956 Warsaw, PolandUniv Grenoble 1, Inst Fournier, F-38402 St Martin Dheres, France
Buczynski, Jaroslaw
Landsberg, J. M.
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, Dept Math, College Stn, TX 77843 USAUniv Grenoble 1, Inst Fournier, F-38402 St Martin Dheres, France
机构:
Univ Estado Rio De Janeiro, Inst Matemat & Estat, Rio De Janeiro, RJ, BrazilUniv Estado Rio De Janeiro, Inst Matemat & Estat, Rio De Janeiro, RJ, Brazil
Salami, Sajad
Mohajer, Abolfazl
论文数: 0引用数: 0
h-index: 0
机构:
Johannes Gutenberg Univ Mainz, Inst Math, Maniz, GermanyUniv Estado Rio De Janeiro, Inst Matemat & Estat, Rio De Janeiro, RJ, Brazil