A Gamma Ornstein–Uhlenbeck model driven by a Hawkes process

被引:0
|
作者
Guillaume Bernis
Riccardo Brignone
Simone Scotti
Carlo Sgarra
机构
[1] Natixis Assurances,
[2] University of Freiburg,undefined
[3] LPSM,undefined
[4] Université de Paris (Paris Diderot),undefined
[5] Politecnico di Milano,undefined
来源
关键词
Stochastic volatility; Hawkes processes; Jump clusters; Leverage effect; Exponential affine processes; VIX; Implied volatility for VIX options; C63; G12; G13;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an extension of the Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-OU Barndorff-Nielsen and Shephard model taking into account jump clustering phenomena. We assume that the intensity process of the Hawkes driver coincides, up to a constant, with the variance process. By applying the theory of continuous-state branching processes with immigration, we prove existence and uniqueness of strong solutions of the SDE governing the asset price dynamics. We propose a measure change of self-exciting Esscher type in order to describe the relation between the risk-neutral and the historical dynamics, showing that the Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-OU Hawkes framework is stable under this probability change. By exploiting the affine features of the model we provide an explicit form for the Laplace transform of the asset log-return, for its quadratic variation and for the ergodic distribution of the variance process. We show that the proposed model exhibits a larger flexibility in comparison with the Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-OU model, in spite of the same number of parameters required. We calibrate the model on market vanilla option prices via characteristic function inversion techniques, we study the price sensitivities and propose an exact simulation scheme. The main financial achievement is that implied volatility of options written on VIX is upward shaped due to the self-exciting property of Hawkes processes, in contrast with the usual downward slope exhibited by the Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-OU Barndorff-Nielsen and Shephard model.
引用
收藏
页码:747 / 773
页数:26
相关论文
共 50 条
  • [31] PARAMETER ESTIMATION FOR AN ORNSTEIN-UHLENBECK PROCESS DRIVEN BY A GENERAL GAUSSIAN NOISE
    Chen, Yong
    Zhou, Hongjuan
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (02) : 573 - 595
  • [32] Exact simulation of the Ornstein-Uhlenbeck driven stochastic volatility model
    Li, Chenxu
    Wu, Linjia
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 275 (02) : 768 - 779
  • [33] The elliptical Ornstein-Uhlenbeck process
    Sykulski, Adam
    Olhede, Sofia
    Sykulska-lawrence, Hanna
    STATISTICS AND ITS INTERFACE, 2023, 16 (01) : 133 - 146
  • [34] PARAMETER ESTIMATION FOR AN ORNSTEIN-UHLENBECK PROCESS DRIVEN BY A GENERAL GAUSSIAN NOISE
    Yong CHEN
    Hongjuan ZHOU
    Acta Mathematica Scientia, 2021, 41 (02) : 573 - 595
  • [35] Ruin probabilities for a Lévy-driven generalised Ornstein–Uhlenbeck process
    Yuri Kabanov
    Serguei Pergamenshchikov
    Finance and Stochastics, 2020, 24 : 39 - 69
  • [36] Parameter estimation for Ornstein–Uhlenbeck processes driven by fractional Lévy process
    Guangjun Shen
    Yunmeng Li
    Zhenlong Gao
    Journal of Inequalities and Applications, 2018
  • [37] Parameter estimation for Ornstein-Uhlenbeck processes driven by fractional Levy process
    Shen, Guangjun
    Li, Yunmeng
    Gao, Zhenlong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [38] Ruin probabilities for a Levy-driven generalised Ornstein-Uhlenbeck process
    Kabanov, Yuri
    Pergamenshchikov, Serguei
    FINANCE AND STOCHASTICS, 2020, 24 (01) : 39 - 69
  • [39] Parameter Estimation for an Ornstein-Uhlenbeck Process Driven by a General Gaussian Noise
    Yong Chen
    Hongjuan Zhou
    Acta Mathematica Scientia, 2021, 41 : 573 - 595
  • [40] THERMALLY ACTIVATED ESCAPE WITH POTENTIAL FLUCTUATIONS DRIVEN BY AN ORNSTEIN-UHLENBECK PROCESS
    REIMANN, P
    PHYSICAL REVIEW E, 1995, 52 (02): : 1579 - 1600