A Gamma Ornstein–Uhlenbeck model driven by a Hawkes process

被引:0
|
作者
Guillaume Bernis
Riccardo Brignone
Simone Scotti
Carlo Sgarra
机构
[1] Natixis Assurances,
[2] University of Freiburg,undefined
[3] LPSM,undefined
[4] Université de Paris (Paris Diderot),undefined
[5] Politecnico di Milano,undefined
来源
关键词
Stochastic volatility; Hawkes processes; Jump clusters; Leverage effect; Exponential affine processes; VIX; Implied volatility for VIX options; C63; G12; G13;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an extension of the Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-OU Barndorff-Nielsen and Shephard model taking into account jump clustering phenomena. We assume that the intensity process of the Hawkes driver coincides, up to a constant, with the variance process. By applying the theory of continuous-state branching processes with immigration, we prove existence and uniqueness of strong solutions of the SDE governing the asset price dynamics. We propose a measure change of self-exciting Esscher type in order to describe the relation between the risk-neutral and the historical dynamics, showing that the Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-OU Hawkes framework is stable under this probability change. By exploiting the affine features of the model we provide an explicit form for the Laplace transform of the asset log-return, for its quadratic variation and for the ergodic distribution of the variance process. We show that the proposed model exhibits a larger flexibility in comparison with the Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-OU model, in spite of the same number of parameters required. We calibrate the model on market vanilla option prices via characteristic function inversion techniques, we study the price sensitivities and propose an exact simulation scheme. The main financial achievement is that implied volatility of options written on VIX is upward shaped due to the self-exciting property of Hawkes processes, in contrast with the usual downward slope exhibited by the Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-OU Barndorff-Nielsen and Shephard model.
引用
收藏
页码:747 / 773
页数:26
相关论文
共 50 条
  • [1] A Gamma Ornstein-Uhlenbeck model driven by a Hawkes process
    Bernis, Guillaume
    Brignone, Riccardo
    Scotti, Simone
    Sgarra, Carlo
    MATHEMATICS AND FINANCIAL ECONOMICS, 2021, 15 (04) : 747 - 773
  • [2] Ornstein- Uhlenbeck Process Driven By a-stable Process and Its Gamma Subordination
    Gajda, Janusz
    Grzesiek, Aleksandra
    Wylomanska, Agnieszka
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2023, 25 (01)
  • [3] On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes
    Bercu, Bernard
    Proia, Frederic
    Savy, Nicolas
    STATISTICS & PROBABILITY LETTERS, 2014, 85 : 36 - 44
  • [4] Parameter Estimation for Ornstein-Uhlenbeck Process Driven by Liu Process
    Wei, Chao
    IAENG International Journal of Applied Mathematics, 2024, 54 (08) : 1643 - 1648
  • [5] Analyzing a stochastic process driven by Ornstein-Uhlenbeck noise
    Lehle, B.
    Peinke, J.
    PHYSICAL REVIEW E, 2018, 97 (01)
  • [6] Ornstein-Uhlenbeck process, Cauchy process, and Ornstein-Uhlenbeck-Cauchy process on a circle
    Liu, Cheng-Shi
    APPLIED MATHEMATICS LETTERS, 2013, 26 (09) : 957 - 962
  • [7] The Ornstein-Uhlenbeck Process and Variance Gamma Process: Parameter Estimation and Simulations
    Nzokem, A. H.
    Montshiwa, V. T.
    THAI JOURNAL OF MATHEMATICS, 2023, : 160 - 168
  • [8] Relativistic Ornstein–Uhlenbeck Process
    F. Debbasch
    K. Mallick
    J. P. Rivet
    Journal of Statistical Physics, 1997, 88 : 945 - 966
  • [9] Gamma mixed fractional Lévy Ornstein-Uhlenbeck process
    Araya, Hector
    Garzon, Johanna
    Rubilar-Torrealba, Rolando
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2024, 11 (01): : 63 - 83
  • [10] Hyperbolic ornstein–uhlenbeck process
    Borodin A.N.
    Journal of Mathematical Sciences, 2016, 219 (5) : 631 - 638