Polyetherimide/dicyanate semi-interpenetrating polymer networks having a morphology spectrum

被引:0
|
作者
Yu-Seung Kim
Hyun-Sung Min
Sung-Chul Kim
机构
[1] Virginia Tech.,Department of Chemistry
[2] LG Chemical Ltd. Research Park,Center for Advanced Functional Polymers
[3] Korea Advanced Institute of Science and Technology,undefined
来源
Macromolecular Research | 2002年 / 10卷
关键词
dicyanate; toughening; morphology; semi-IPNs; gradient;
D O I
暂无
中图分类号
学科分类号
摘要
The morphology, dynamic mechanical behavior and fracture behavior of polyetherimide (PEI)/dicyanate semi-interpenetrating polymer networks (semi-IPNs) with a morphology spectrum were analyzed. To obtain the morphology spectrum, we dispersed PEI particles in the precured dicyanate resin containing 300 ppm of zinc stearate catalyst. The semi-IPNs exhibited a morphology spectrum, which consisted of nodular spinodal structure, dualphase morphology, and sea-island type morphology, in the radial direction of each dispersed PEI particle due to the concentration gradient developed by restricted dissolution and diffusion of the PEI particles during the curing process of the dicyanate resin. Analysis of the dynamic mechanical data obtained by the semi-IPNs demonstrated that the transition of the PEI-rich phase was shifted toward higher temperature as well as becoming broader because of the gradient structure. The semi-IPNs with the morphology spectrum showed improved fracture energy of 0.3 kJ/m2, which was 1.4 times that of the IPNs having sea-island type morphology. It was found that the partially introduced nodular structure played a crucial role in the enhancement of the fracture resistance of the semi-IPNs.
引用
收藏
页码:60 / 66
页数:6
相关论文
共 50 条
  • [21] Semi-interpenetrating polymer networks based on partially compatible components
    Brovko, O.O.
    Sergeeva, L.M.
    Karabanova, I.V.
    Gorbach, L.A.
    Ukrainskij Khimicheskij Zhurnal, 2003, 69 (11-12): : 106 - 109
  • [22] Morphology and mechanical properties of semi-interpenetrating polymer networks from polyurethane and benzyl konjac glucomannan
    Lu, YS
    Zhang, LN
    POLYMER, 2002, 43 (14) : 3979 - 3986
  • [23] Hybrid materials based on sequential semi-interpenetrating polymer networks
    Alekseeva, Tatiana T.
    Lipatov, Yuri S.
    Babkina, Natali V.
    Yarovaya, Natali V.
    Sorochinskaya, Lyubov A.
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2008, 483 : 191 - 204
  • [24] Structure-microhardness relationship in semi-interpenetrating polymer networks
    Calleja, FJB
    Privalko, EG
    Fainleib, AM
    Shantalii, TA
    Privalko, VP
    JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS, 2000, B39 (02): : 131 - 141
  • [25] Synthesis and characterization of polydimethylsiloxane/polystyrene semi-interpenetrating polymer networks
    Zhang, ZC
    Fang, SB
    CHINESE JOURNAL OF POLYMER SCIENCE, 1999, 17 (06) : 537 - 542
  • [26] Sequential semi-interpenetrating polymer networks based on polyurethane and polystyrene
    Yu. P. Gomza
    V. V. Klepko
    Yu. S. Lipatov
    T. T. Alekseeva
    L. A. Sorochinskaya
    S. D. Nesin
    N. V. Yarovaya
    Polymer Science Series A, 2008, 50 : 956 - 964
  • [27] Synthesis and analysis of lactose polyurethanes and their semi-interpenetrating polymer networks
    Cheng, H. N.
    Biswas, Atanu
    Kim, Sanghoon
    Appell, Michael
    Furtado, Roselayne F.
    Rocha Bastos, Maria do Socorro
    Alves, Carlucio R.
    INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION, 2022, 27 (04) : 266 - 276
  • [28] SEMI-INTERPENETRATING POLYMER NETWORKS OF CHITOSAN AND POLY(ETHYLENE GLYCOL)
    Milosavljevic, Nedeljko B.
    Krusic, Melina T. Kalagasidis
    Filipovic, Jovanka M.
    HEMIJSKA INDUSTRIJA, 2008, 62 (06) : 345 - 351
  • [29] Immobilization of laccase in κ-carrageenan based semi-interpenetrating polymer networks
    Makas, Y. Gizem
    Kalkan, N. Ayca
    Aksoy, Serpil
    Altinok, Haydar
    Hasirci, Nesrin
    JOURNAL OF BIOTECHNOLOGY, 2010, 148 (04) : 216 - 220
  • [30] Sequential semi-interpenetrating polymer networks based on polyurethane and polystyrene
    Gomza, Yu. P.
    Klepko, V. V.
    Lipatov, Yu. S.
    Alekseeva, T. T.
    Sorochinskaya, L. A.
    Nesin, S. D.
    Yarovaya, N. V.
    POLYMER SCIENCE SERIES A, 2008, 50 (09) : 956 - 964