Advanced skeleton-based action recognition via spatial–temporal rotation descriptors

被引:0
|
作者
Zhongwei Shen
Xiao-Jun Wu
Josef Kittler
机构
[1] Jiangnan University,School of Internet of Things Engineering
[2] Jiangnan University,Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence
[3] University of Surrey,The Centre for Vision, Speech and Signal Processing
来源
关键词
Skeleton-based action recognition; Temporal-oriented features; Two-stream CNN;
D O I
暂无
中图分类号
学科分类号
摘要
As human action is a spatial–temporal process, modern action recognition research has focused on exploring more effective motion representations, rather than only taking human poses as input. To better model a motion pattern, in this paper, we exploit the rotation information to depict the spatial–temporal variation, thus enhancing the dynamic appearance, as well as forming a complementary component with the static coordinates of the joints. Specifically, we design to represent the movement of human body with joint units, consisting of performing regrouping human joints together with the adjacent two bones. Therefore, the rotation descriptors reduce the impact from the static values while focus on the dynamic movement. The proposed general features can be simply applied to existing CNN-based action recognition methods. The experimental results performed on NTU-RGB+D and ICL First Person Handpose datasets demonstrate the advantages of the proposed method.
引用
收藏
页码:1335 / 1346
页数:11
相关论文
共 50 条
  • [21] Spatial Temporal Graph Deconvolutional Network for Skeleton-Based Human Action Recognition
    Peng, Wei
    Shi, Jingang
    Zhao, Guoying
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 244 - 248
  • [22] Temporal Extension Module for Skeleton-Based Action Recognition
    Obinata, Yuya
    Yamamoto, Takuma
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 534 - 540
  • [23] Emotion recognition by skeleton-based spatial and temporal analysis
    Oguz, Abdulhalik
    Ertugrul, Omer Faruk
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [24] A Novel Skeleton Spatial Pyramid Model for Skeleton-based Action Recognition
    Li, Yanshan
    Guo, Tianyu
    Xia, Rongjie
    Liu, Xing
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2019), 2019, : 16 - 20
  • [25] Spatial-Temporal gated graph attention network for skeleton-based action recognition
    Rahevar, Mrugendrasinh
    Ganatra, Amit
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (03) : 929 - 939
  • [26] STSD: spatial-temporal semantic decomposition transformer for skeleton-based action recognition
    Cui, Hu
    Hayama, Tessai
    MULTIMEDIA SYSTEMS, 2024, 30 (01)
  • [27] Spatial-Temporal Dynamic Graph Attention Network for Skeleton-Based Action Recognition
    Rahevar, Mrugendrasinh
    Ganatra, Amit
    Saba, Tanzila
    Rehman, Amjad
    Bahaj, Saeed Ali
    IEEE ACCESS, 2023, 11 : 21546 - 21553
  • [28] Spatial-temporal graph neural ODE networks for skeleton-based action recognition
    Pan, Longji
    Lu, Jianguang
    Tang, Xianghong
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [29] A Separable Spatial-Temporal Graph Learning Approach for Skeleton-Based Action Recognition
    Zheng, Hui
    Zhao, Ye-Sheng
    Zhang, Bo
    Shang, Guo-Qiang
    IEEE SENSORS LETTERS, 2024, 8 (11)
  • [30] Dynamic Spatial-temporal Hypergraph Convolutional Network for Skeleton-based Action Recognition
    Wang, Shengqin
    Zhang, Yongji
    Qi, Hong
    Zhao, Minghao
    Jiang, Yu
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2147 - 2152