Background rejection in atmospheric Cherenkov telescopes using recurrent convolutional neural networks

被引:0
|
作者
R. D. Parsons
S. Ohm
机构
[1] Max-Planck-Institut für Kernphysik,Institut für Physik
[2] DESY,undefined
[3] Humboldt-Universität zu Berlin,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we present a new, high performance algorithm for background rejection in imaging atmospheric Cherenkov telescopes. We build on the already popular machine-learning techniques used in gamma-ray astronomy by the application of the latest techniques in machine learning, namely recurrent and convolutional neural networks, to the background rejection problem. Use of these machine-learning techniques addresses some of the key challenges encountered in the currently implemented algorithms and helps to significantly increase the background rejection performance between 100 GeV and 100 TeV energies. We apply these machine learning techniques to the H.E.S.S. telescope array, first testing their performance on simulated data and then applying the analysis to two well known gamma-ray sources. With real observational data we find significantly improved performance over the current standard methods, with a 20–25% reduction in the background rate when applying the recurrent neural network analysis. Importantly, we also find that the convolutional neural network results are strongly dependent on the sky brightness in the source region which has important implications for the future implementation of this method in Cherenkov telescope analyses.
引用
收藏
相关论文
共 50 条
  • [1] Background rejection in atmospheric Cherenkov telescopes using recurrent convolutional neural networks
    Parsons, R. D.
    Ohm, S.
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (05):
  • [2] Application of graph networks to background rejection in Imaging Air Cherenkov Telescopes
    Glombitza, J.
    Joshi, V
    Bruno, B.
    Funk, S.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (11):
  • [3] Background rejection using image residuals from large telescopes in imaging atmospheric Cherenkov telescope arrays
    Olivera-Nieto, L.
    Ren, H. X.
    Mitchell, A. M. W.
    Marandon, V.
    Hinton, J. A.
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (12):
  • [4] Background rejection using image residuals from large telescopes in imaging atmospheric Cherenkov telescope arrays
    L. Olivera-Nieto
    H. X. Ren
    A. M. W. Mitchell
    V. Marandon
    J. A. Hinton
    The European Physical Journal C, 82
  • [5] Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment
    M. Kekic
    C. Adams
    K. Woodruff
    J. Renner
    E. Church
    M. Del Tutto
    J. A. Hernando Morata
    J. J. Gómez-Cadenas
    V. Álvarez
    L. Arazi
    I. J. Arnquist
    C. D. R. Azevedo
    K. Bailey
    F. Ballester
    J. M. Benlloch-Rodríguez
    F. I. G. M. Borges
    N. Byrnes
    S. Cárcel
    J. V. Carrión
    S. Cebrián
    C. A. N. Conde
    T. Contreras
    G. Díaz
    J. Díaz
    M. Diesburg
    J. Escada
    R. Esteve
    R. Felkai
    A. F. M. Fernandes
    L. M. P. Fernandes
    P. Ferrario
    A. L. Ferreira
    E. D. C. Freitas
    J. Generowicz
    S. Ghosh
    A. Goldschmidt
    D. González-Díaz
    R. Guenette
    R. M. Gutiérrez
    J. Haefner
    K. Hafidi
    J. Hauptman
    C. A. O. Henriques
    P. Herrero
    V. Herrero
    Y. Ifergan
    B. J. P. Jones
    L. Labarga
    A. Laing
    P. Lebrun
    Journal of High Energy Physics, 2021
  • [6] Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment
    Kekic, M.
    Adams, C.
    Woodruff, K.
    Renner, J.
    Church, E.
    Del Tutto, M.
    Hernando Morata, J. A.
    Gomez-Cadenas, J. J.
    Alvarez, V
    Arazi, L.
    Arnquist, I. J.
    Azevedo, C. D. R.
    Bailey, K.
    Ballester, F.
    Benlloch-Rodriguez, J. M.
    Borges, F. I. G. M.
    Byrnes, N.
    Carcel, S.
    Carrion, J., V
    Cebrian, S.
    Conde, C. A. N.
    Contreras, T.
    Diaz, G.
    Diaz, J.
    Diesburg, M.
    Escada, J.
    Esteve, R.
    Felkai, R.
    Fernandes, A. F. M.
    Fernandes, L. M. P.
    Ferrario, P.
    Ferreira, A. L.
    Freitas, E. D. C.
    Generowicz, J.
    Ghosh, S.
    Goldschmidt, A.
    Gonzalez-Diaz, D.
    Guenette, R.
    Gutierrez, R. M.
    Haefner, J.
    Hafidi, K.
    Hauptman, J.
    Henriques, C. A. O.
    Herrero, P.
    Herrero, V
    Ifergan, Y.
    Jones, B. J. P.
    Labarga, L.
    Laing, A.
    Lebrun, P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (01)
  • [7] DIRECTION FINDING USING CONVOLUTIONAL NEURAL NETWORKS and CONVOLUTIONAL RECURRENT NEURAL NETWORKS
    Uckun, Fehmi Ayberk
    Ozer, Hakan
    Nurbas, Ekin
    Onat, Emrah
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [8] The cosmic ray background as a tool for relative calibration of atmospheric Cherenkov telescopes
    LeBohec, S
    Holder, J
    ASTROPARTICLE PHYSICS, 2003, 19 (02) : 221 - 233
  • [9] Cosmic-ray events as background in imaging atmospheric Cherenkov telescopes
    Maier, G.
    Knapp, J.
    ASTROPARTICLE PHYSICS, 2007, 28 (01) : 72 - 81
  • [10] Signal-background separation and energy reconstruction of gamma rays using pattern spectra and convolutional neural networks for the Small-Sized Telescopes of the Cherenkov Telescope Array
    Aschersleben, J.
    Arnesen, T. T. H.
    Peletier, R. F.
    Vecchi, M.
    Vlasakidis, C.
    Wilkinson, M. H. F.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2024, 1059