Sharp-Interface Nematic–Isotropic Phase Transitions without Flow

被引:0
|
作者
Paolo Cermelli
Eliot Fried
Morton E. Gurtin
机构
[1] Università di Torino,Dipartimento di Matematica
[2] University of Washington in St. Louis,Department of Mechanical and Aerospace Engineering
[3] Carnegie Mellon University Pittsburgh,Department of Mathematical Sciences
关键词
Differential Equation; Phase Transition; Ordinary Differential Equation; Liquid Crystal; Evolution Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We derive a supplemental evolution equation for an interface between the nematic and isotropic phases of a liquid crystal when flow is neglected. Our approach is based on the notion of configurational force. As an application, we study the behavior of a spherical isotropic drop surrounded by a radially oriented nematic phase: our supplemental evolution equation then reduces to a simple ordinary differential equation admitting a closed-form solution. In addition to describing many features of isotropic-to-nematic phase transitions, this simplified model yields insight concerning the occurrence and stability of isotropic cores for hedgehog defects in liquid crystals.
引用
收藏
页码:151 / 178
页数:27
相关论文
共 50 条
  • [21] A sharp-interface phase change model for a mass-conservative interface tracking method
    Sato, Yohei
    Niceno, Bojan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 249 : 127 - 161
  • [22] Isotropic-Nematic Phase Transitions in Gravitational Systems
    Roupas, Zacharias
    Kocsis, Bence
    Tremaine, Scott
    ASTROPHYSICAL JOURNAL, 2017, 842 (02):
  • [23] ISOTROPIC-NEMATIC PHASE TRANSITIONS IN LIQUID CRYSTALS
    Fabrizio, Mauro
    Giorgi, Claudio
    Morro, Angelo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (03): : 565 - 579
  • [24] Quantitative comparison of Taylor flow simulations based on sharp-interface and diffuse-interface models
    Aland, S.
    Boden, S.
    Hahn, A.
    Klingbeil, F.
    Weismann, M.
    Weller, S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 73 (04) : 344 - 361
  • [25] On the convergence of the weakly compressible sharp-interface method for two-phase flows
    Schranner, Felix S.
    Hu, Xiangyu
    Adams, Nikolaus A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 324 : 94 - 114
  • [26] A Sharp-Interface Model of the Diffusive Phase Transformation in a Nickel-Based Superalloy
    Munk, Lukas
    Reschka, Silvia
    Maier, Hans Juergen
    Wriggers, Peter
    Loehnert, Stefan
    METALS, 2022, 12 (08)
  • [27] A second-order adaptive sharp-interface method for incompressible multiphase flow
    Sussman, M.
    Hussaini, M. Y.
    Smith, K. M.
    Zhi-Wei, Ren
    Mihalef, V.
    COMPUTATIONAL FLUID DYNAMICS 2004, PROCEEDINGS, 2006, : 643 - +
  • [28] Stability of a sharp uniaxial-isotropic phase interface
    Shklyaev, Oleg E.
    Shen, Amy Q.
    Fried, Eliot
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2009, 339 (02) : 502 - 510
  • [29] Peculiarities of light transmission at nematic-isotropic liquid and isotropic liquid-nematic phase transitions
    Avci, N.
    Nesrullajev, A.
    Oktik, S.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2007, 9 (02): : 413 - 416
  • [30] A sharp-interface Cartesian grid method for viscoelastic fluid flow in complex geometry
    Yi, Wei
    Corbett, Daniel
    Yuan, Xue-Feng
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2016, 234 : 82 - 104