An endomorphism of the free monoid A∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${A}^*$$\end{document} is invertible if it is injective and extends to an automorphism of the free group generated by A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${A}$$\end{document}. A simple example: the endomorphism that leaves all generators A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${A}$$\end{document} invariant except one, say a, which is mapped to ba for some other generator b. We give a monoid presentation for the submonoid generated by all such endomorphisms when a and b are taken arbitrarily. These left translations are a special case of Nielsen positive transformations: “left” because the mutiplicative constant acts on the left and “positive” because this constant belongs to the free monoid, not the free group.
机构:
Univ Colorado, Dept Math, Boulder, CO 80309 USAUniv Colorado, Dept Math, Boulder, CO 80309 USA
Kearnes, Keith A.
Kiss, Emil W.
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Dept Algebra & Number Theory, Pazmany Peter Setany 1-C, H-1117 Budapest, HungaryUniv Colorado, Dept Math, Boulder, CO 80309 USA
Kiss, Emil W.
Szendrei, Agnes
论文数: 0引用数: 0
h-index: 0
机构:
Univ Colorado, Dept Math, Boulder, CO 80309 USAUniv Colorado, Dept Math, Boulder, CO 80309 USA