Ampleness equivalence and dominance for vector bundles

被引:0
|
作者
F. Laytimi
W. Nahm
机构
[1] Université Lille 1,Mathématiques
[2] Dublin Institute for Advanced Studies, Bât. M2
来源
Geometriae Dedicata | 2019年 / 200卷
关键词
Ampleness; Vector bundles; Flag variety; Schur functor; 14F17;
D O I
暂无
中图分类号
学科分类号
摘要
Hartshorne in “Ample vector bundles” proved that E is ample if and only if OP(E)(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal O}_{P(E)}(1)$$\end{document} is ample. Here we generalize this result to flag manifolds associated to a vector bundle E on a complex projective manifold X: For a partition a we show that the line bundle Qas\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Q_a^s$$\end{document} on the corresponding flag manifold Fls(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}l_s(E)$$\end{document} is ample if and only if SaE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal S}_aE $$\end{document} is ample. In particular detQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\det Q$$\end{document} on Gr(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {G}_r(E)$$\end{document} is ample if and only if ∧rE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\wedge ^rE$$\end{document} is ample. We give also a proof of the Ampleness Dominance theorem that does not depend on the saturation property of the Littlewood–Richardson semigroup.
引用
收藏
页码:77 / 84
页数:7
相关论文
共 50 条