On the Applicability of the Relations of the Cubic Timoshenko-Type Theory of Shells to the Study of the Postcritical Behavior of Rods

被引:0
|
作者
I. Yu. Babich
N. B. Zhukova
N. P. Semenyuk
机构
[1] National Academy of Sciences of Ukraine,S. P. Timoshenko Institute of Mechanics
来源
关键词
Exact Solution; Asymptotic Theory; Nonlinear Theory; Postcritical Behavior; Supercritical Behavior;
D O I
暂无
中图分类号
学科分类号
摘要
The question of whether the nonlinear Timoshenko-type theory of shells can be applied to the study of the initial postcritical behavior of a rod under compression is considered. The Koiter asymptotic theory in the Budyanskii form is used. The exact solution of the problem is obtained and a formula for the coefficient of postcritical behavior allowing for the effect of lateral-shear strains is derived. It is shown that the expressions (specified to within cubic terms) for lateral-shear strains and curvature permit us to use the nonlinear theory of shells to analyze the initial supercritical behavior of rods
引用
收藏
页码:99 / 106
页数:7
相关论文
共 50 条
  • [21] On Timoshenko-type systems with type III thermoelasticity: Asymptotic behavior
    Santos, M. L.
    Almeida Junior, D. S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (01) : 650 - 671
  • [22] On the shear correction factor in the Timoshenko-type shell theory
    É. I. Grigolyuk
    G. M. Kulikov
    Doklady Physics, 2001, 46 : 797 - 799
  • [23] Solvability of Nonlinear Equilibrium Problems for Timoshenko-type Shallow Shells in Curvilinear Coordinates
    S. N. Timergaliev
    Lobachevskii Journal of Mathematics, 2023, 44 : 5469 - 5484
  • [24] On the mathematical models of the Timoshenko-type multi-layer flexible orthotropic shells
    V. A. Krysko
    J. Awrejcewicz
    M. V. Zhigalov
    I. V. Papkova
    T. V. Yakovleva
    A. V. Krysko
    Nonlinear Dynamics, 2018, 92 : 2093 - 2118
  • [25] Solvability of Nonlinear Equilibrium Problems for Timoshenko-type Shallow Shells in Curvilinear Coordinates
    Timergaliev, S. N.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (12) : 5469 - 5484
  • [26] Application of the hamilton formalism in a timoshenko-type theory of vibrations of plates
    M. O. Shul’ga
    Journal of Mathematical Sciences, 2012, 183 (2) : 222 - 230
  • [27] Asymptotic behavior of the Timoshenko-type system with nonlinear boundary control
    Ayadi, Mohamed Ali
    Bchatnia, Ahmed
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (02) : 171 - 182
  • [28] On the mathematical models of the Timoshenko-type multi-layer flexible orthotropic shells
    Krysko, V. A.
    Awrejcewicz, J.
    Zhigalov, M. V.
    Papkova, I. V.
    Yakovleva, T. V.
    Krysko, A. V.
    NONLINEAR DYNAMICS, 2018, 92 (04) : 2093 - 2118
  • [29] On the Existence of Solutions to Geometrically Nonlinear Problems for Shallow Timoshenko-Type Shells with Free Edges
    Timergaliev, S. N.
    RUSSIAN MATHEMATICS, 2014, 58 (03) : 31 - 46
  • [30] Solvability of One Nonlinear Boundary-value Problem for a System of Differential Equations of the Theory of Shallow Timoshenko-type Shells
    Ahmadiev, Marat G.
    Timergaliev, Samat N.
    Kharasovat, Lilya S.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2016, 9 (02): : 131 - 143