An investigation into the determination of critical dimension of self-avoiding random walk on a d-dimensional simplex fractal

被引:0
|
作者
M.A. Jafarizadeh
S.K.A. Seyed-Yagoobi
机构
[1] Department of Theoretical Physics and Astrophysics,
[2] Tabriz University,undefined
[3] Tabriz 51664,undefined
[4] Iran,undefined
[5] Institute for Studies in Theoretical Physics and Mathematics,undefined
[6] Teheran 19395-1795,undefined
[7] Iran,undefined
关键词
PACS. 05.40.+j Fluctuation phenomena, random processes, and Brownian motion - 36.20.Ey Conformation (statistics and dynamics);
D O I
暂无
中图分类号
学科分类号
摘要
By setting up the relevant recursion relations and by doing exact and approximate calculations, we show that there is no critical dimension in a self-avoiding random walk on a simplex fractal.
引用
收藏
页码:429 / 437
页数:8
相关论文
共 50 条
  • [31] Self-avoiding pruning random walk on signed network
    Wang, Huijuan
    Qu, Cunquan
    Jiao, Chongze
    Rusze, Wioletta
    NEW JOURNAL OF PHYSICS, 2019, 21 (03):
  • [32] Canonical ensemble of particles in a self-avoiding random walk
    Alkhimov, V. I.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 191 (01) : 558 - 571
  • [33] A self-avoiding walk model of random copolymer adsorption
    Orlandini, E
    Tesi, MC
    Whittington, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (03): : 469 - 477
  • [34] Canonical ensemble of particles in a self-avoiding random walk
    V. I. Alkhimov
    Theoretical and Mathematical Physics, 2017, 191 : 558 - 571
  • [35] CRITICAL EXPONENTS AND CORRECTIONS TO SCALING FOR THE TWO-DIMENSIONAL SELF-AVOIDING WALK
    ISHINABE, T
    PHYSICAL REVIEW B, 1988, 37 (04): : 2376 - 2379
  • [36] RANDOM-WALK ON A SELF-AVOIDING WALK WITH SUPERCONDUCTING LOCAL BRIDGES
    BHAN, HL
    BHAT, VK
    SINGH, Y
    MANNA, SS
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1989, 74 (03): : 389 - 393
  • [37] Renormalization group analysis of the self-avoiding paths on the D-dimensional Sierpinski gaskets
    Hattori, T
    Tsuda, T
    JOURNAL OF STATISTICAL PHYSICS, 2002, 109 (1-2) : 39 - 66
  • [38] CRITICAL DIMENSIONALITY AND EXPONENT OF THE TRUE SELF-AVOIDING WALK
    PIETRONERO, L
    PHYSICAL REVIEW B, 1983, 27 (09): : 5887 - 5889
  • [39] MARKOVIAN NATURE OF THE 2-DIMENSIONAL SELF-AVOIDING RANDOM-WALK PROBLEM
    WIEGEL, FW
    PHYSICA A, 1979, 98 (1-2): : 345 - 351
  • [40] An estimation method of fractal dimension of self-avoiding roughened interfaces
    Damian Adame, L.
    Kryvko, A.
    Samayoa Ochoa, D.
    Rodriguez Castellanos, A.
    REVISTA MEXICANA DE FISICA, 2017, 63 (01) : 12 - 18