Symmetries at causal boundaries in 2D and 3D gravity

被引:0
|
作者
H. Adami
Pujian Mao
M. M. Sheikh-Jabbari
V. Taghiloo
H. Yavartanoo
机构
[1] Tsinghua University,Yau Mathematical Sciences Center
[2] Beijing Institute of Mathematical Sciences and Applications (BIMSA),Center for Joint Quantum Studies and Department of Physics, School of Science
[3] Tianjin University,undefined
[4] School of Physics,undefined
[5] Institute for Research in Fundamental Sciences (IPM),undefined
[6] Department of Physics,undefined
[7] Institute for Advanced Studies in Basic Sciences (IASBS),undefined
来源
Journal of High Energy Physics | / 2022卷
关键词
Black Holes; Gauge Symmetry; Global Symmetries; Space-Time Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
We study 2d and 3d gravity theories on spacetimes with causal (timelike or null) codimension one boundaries while allowing for variations in the position of the boundary. We construct the corresponding solution phase space and specify boundary degrees freedom by analysing boundary (surface) charges labelling them. We discuss Y and W freedoms and change of slicing in the solution space. For D dimensional case we find D + 1 surface charges, which are generic functions over the causal boundary. We show that there exist solution space slicings in which the charges are integrable. For the 3d case there exists an integrable slicing where charge algebra takes the form of Heisenberg ⊕ A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}3 where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}3 is two copies of Virasoro at Brown-Henneaux central charge for AdS3 gravity and BMS3 for the 3d flat space gravity.
引用
收藏
相关论文
共 50 条
  • [21] Trivial symmetries in a 3D topological torsion model of gravity
    Banerjee, Rabin
    Roy, Debraj
    INTERNATIONAL CONFERENCE ON MODERN PERSPECTIVES OF COSMOLOGY AND GRAVITATION (COSGRAV12), 2012, 405
  • [22] Type-II hidden symmetries of the linear 2D and 3D wave equations
    Abraham-Shrauner, Barbara
    Govinder, Keshlan S.
    Arrigo, Daniel J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (20): : 5739 - 5747
  • [23] 21/2D or 3D?
    Roth, S
    Küster, B
    Sura, H
    KUNSTSTOFFE-PLAST EUROPE, 2004, 94 (07): : 65 - 67
  • [24] 2D and 3D on demand
    Philippi, Anne
    F & M; Feinwerktechnik, Mikrotechnik, Messtechnik, 1998, 106 (06): : 412 - 414
  • [25] From 2D to 3D
    Steven De Feyter
    Nature Chemistry, 2011, 3 (1) : 14 - 15
  • [26] Evidence for the continuum in 2D causal set quantum gravity
    Surya, Sumati
    CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (13)
  • [27] Integrated gradient interpretation techniques for 2D and 3D gravity data interpretation
    Saibi, Hakim
    Nishijima, Jun
    Ehara, Sachio
    Aboud, Essam
    EARTH PLANETS AND SPACE, 2006, 58 (07): : 815 - 821
  • [28] Integrated gradient interpretation techniques for 2D and 3D gravity data interpretation
    Hakim Saibi
    Jun Nishijima
    Sachio Ehara
    Essam Aboud
    Earth, Planets and Space, 2006, 58 : 815 - 821
  • [29] 2D and 3D structural boundaries of the tectonic composition of the Anatolia and surrounding seas using by the gravity (Satellite Data): Eastern Mediterranean
    Toker, Ceyhan Ertan
    BULLETIN OF THE MINERAL RESEARCH AND EXPLORATION, 2020, 163 : 39 - 45
  • [30] A microfluidic device for 2D to 3D and 3D to 3D cell navigation
    Shamloo, Amir
    Amirifar, Leyla
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2016, 26 (01)