Zeros of irreducible characters in factorised groups

被引:0
|
作者
M. J. Felipe
A. Martínez-Pastor
V. M. Ortiz-Sotomayor
机构
[1] Universitat Politècnica de València,Instituto Universitario de Matemática Pura y Aplicada (IUMPA)
关键词
Finite groups; Products of groups; Irreducible characters; Conjugacy classes; Vanishing elements; 20D40; 20C15; 20E45;
D O I
暂无
中图分类号
学科分类号
摘要
An element g of a finite group G is said to be vanishing inG if there exists an irreducible character χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} of G such that χ(g)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (g)=0$$\end{document}; in this case, g is also called a zero of G. The aim of this paper is to obtain structural properties of a factorised group G=AB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=AB$$\end{document} when we impose some conditions on prime power order elements g∈A∪B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\in A\cup B$$\end{document} which are (non-)vanishing in G.
引用
收藏
页码:129 / 142
页数:13
相关论文
共 50 条