An element g of a finite group G is said to be vanishing inG if there exists an irreducible character χ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi $$\end{document} of G such that χ(g)=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi (g)=0$$\end{document}; in this case, g is also called a zero of G. The aim of this paper is to obtain structural properties of a factorised group G=AB\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G=AB$$\end{document} when we impose some conditions on prime power order elements g∈A∪B\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$g\in A\cup B$$\end{document} which are (non-)vanishing in G.
机构:
St. Petersburg Department of the Steklov Mathematical Institute, St. PetersburgSt. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg
机构:
Univ Pretoria, Dept Math & Appl Math, Private Bag X20, ZA-0028 Pretoria, South Africa
DST NRF Ctr Excellence Math & Stat Sci CoE MaSS, Pretoria, South AfricaUniv Pretoria, Dept Math & Appl Math, Private Bag X20, ZA-0028 Pretoria, South Africa