Decay and Non-Decay of the Local Energy for the Wave Equation on the De Sitter–Schwarzschild Metric

被引:0
|
作者
Jean-François Bony
Dietrich Häfner
机构
[1] Institut de Mathématiques de Bordeaux,
[2] UMR 5251 du CNRS,undefined
[3] Université de Bordeaux I,undefined
来源
Communications in Mathematical Physics | 2008年 / 282卷
关键词
Black Hole; Wave Equation; Angular Direction; Resolvent Estimate; Resonance Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
We describe an expansion of the solution of the wave equation on the De Sitter–Schwarzschild metric in terms of resonances. The principal term in the expansion is due to a resonance at 0. The error term decays polynomially if we permit a logarithmic derivative loss in the angular directions and exponentially if we permit an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document} derivative loss in the angular directions.
引用
收藏
页码:697 / 719
页数:22
相关论文
共 50 条