Existence and nonexistence of solutions to pure supercritical p-Laplacian problems

被引:0
|
作者
Mónica Clapp
Sweta Tiwari
机构
[1] Universidad Nacional Autónoma de México,Instituto de Matemáticas
关键词
Quasilinear supercritical problem; higher critical exponents; -harmonic morphism; hopf maps; 35J92; 35B33; 53C43;
D O I
暂无
中图分类号
学科分类号
摘要
We establish multiplicity and nonexistence of solutions to the quasilinear problem -Δpv=vq-2vinΩ,v=0on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta _{p}v=\left| v\right| ^{q-2}v\,\,\text {in}\,\,\Omega ,\qquad v=0\text { on }{\partial {\Omega }}, \end{aligned}$$\end{document}in some bounded smooth domains Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{N}$$\end{document}, for 1<p<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<N$$\end{document} and some supercritical exponents q>p∗:=NpN-p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>p^{*}:=\frac{Np}{N-p}$$\end{document}. Multiplicity is established in domains arising from the Hopf maps. We show that, after a suitable change of metric, these maps become p-harmonic morphisms, i.e., they preserve the p-Laplace operator up to a factor. We use them to reduce the supercritical problem to an anisotropic quasilinear critical problem in a domain of lower dimension.
引用
收藏
页码:375 / 385
页数:10
相关论文
共 50 条
  • [21] Existence and nonexistence of global positive solutions for a weakly coupled P-Laplacian system
    Xian-zhong Zeng
    Zhen-hai Liu
    Yong-geng Gu
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 541 - 554
  • [22] Existence and Nonexistence of Global Positive Solutions for a Weakly Coupled P-Laplacian System
    Xianzhong ZENG
    Zhenhai LI
    Yonggeng GU
    [J]. Acta Mathematicae Applicatae Sinica(English Series)., 2013, 29 (03) - 554
  • [23] Existence and Nonexistence of Global Positive Solutions for a Weakly Coupled P-Laplacian System
    Xian-zhong ZENG
    Zhen-hai LI
    Yong-geng GU
    [J]. Acta Mathematicae Applicatae Sinica, 2013, (03) : 541 - 554
  • [24] Existence and Nonexistence of Global Positive Solutions for a Weakly Coupled P-Laplacian System
    Zeng, Xian-zhong
    Liu, Zhen-hai
    Gu, Yong-geng
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (03): : 541 - 554
  • [25] Existence Of Nontrivial Solutions For A p-Laplacian Problems With Impulsive Effects
    Hssini, El Miloud
    Massar, Mohammed
    Elbouyahyaoui, Lakhdar
    [J]. APPLIED MATHEMATICS E-NOTES, 2016, 16 : 21 - 32
  • [26] Existence of heteroclinic solutions for discrete p-Laplacian problems with a parameter
    Cabada, Alberto
    Tersian, Stepan
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) : 2429 - 2434
  • [27] Existence and nonexistence of solutions for a class of Kirchhoff type equation involving fractional p-Laplacian
    Liu, Senli
    Chen, Haibo
    Yang, Jie
    Su, Yu
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
  • [28] Existence and nonexistence of solutions for a class of Kirchhoff type equation involving fractional p-Laplacian
    Senli Liu
    Haibo Chen
    Jie Yang
    Yu Su
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [29] Existence and nonexistence of positive solutions for the fractional coupled system involving generalized p-Laplacian
    Ying Wang
    Jiqiang Jiang
    [J]. Advances in Difference Equations, 2017
  • [30] Existence and nonexistence of positive solutions for the fractional coupled system involving generalized p-Laplacian
    Wang, Ying
    Jiang, Jiqiang
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,